Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Agrociencia
versión On-line ISSN 2521-9766versión impresa ISSN 1405-3195
Agrociencia vol.40 no.1 Texcoco ene./feb. 2006
Fitotecnia
Cinética de acumulación y distribución de flavonoides en guayaba (Psidium guajava L.)
1Fisiología Vegetal. Campus Montecillo. Colegio de Postgraduados. 56230. Montecillo, Estado de México. (vadolores16@yahoo.com.mx)
2Botánica. Campus Montecillo. Colegio de Postgraduados. 56230. Montecillo, Estado de México. (msoto@colpos.mx)
3Estadística y Cálculo. Campus Montecillo. Colegio de Postgraduados. 56230. Montecillo, Estado de México.
La finalidad de este trabajo fue identificar tres flavonoles (miricetina, quercetina y kaempferol) y dos flavonas (luteolina y apigenina) en corteza, hoja inmadura, hoja madura, hoja senescente, botón floral, flor y fruto de guayaba (Psidium guajava L.). El botón floral presentó la mayor concentración de quercetina (2036 mg kg-1), seguido por la hoja madura con (1236 mg kg-1). El fruto presentó los cinco compuestos evaluados pero en menor concentración. De este estudio se derivó la evaluación del desarrollo de fruto y de hoja para identificar la etapa fenológica de mayor concentración de flavonoides. Entre los tres estadío de fruto, el primer estadío de botón presentó la mayor concentración (mg kg-1) de miricetina (255.8) quercetina (3604.7), luteolina (229.1), kaempferol (229.1) y apigenina (251.6). Las hojas maduras presentaron mayor concentración en julio: miricetina (208.44) quercetina (2883.08), luteolina (51.22) y kaempferol (97.25) (Tukey, p≤0.05).
Palabra clave: Psidium guajava; corteza; flavonoides; fruto; hoja; yema floral
The objective of this work was to identify three flavonols (myricetin, quercetin, and kaempferol) and two flavones (luteolin and apigenin) in bark, immature, mature and senescent leaves, floral buds, flowers and fruits of guava (Psidium guajava L.). Floral bud had the highest concentration of quercetin (2036 mg kg−1), followed by mature leaf (1236 mg kg−1). The five compounds were found in fruit in lower concentrations. The evaluation of fruit and leaf to identify phenological stage with higher flavonoids concentration, was derived from this study. Of the three stages of fruit, the first stage of bud had the highest concentrations of myricetin (255.8 mg kg−1), quercetin (3604.7 mg kg−1), luteolin (229.1 mg kg−1), kaempferol (229.1 mg kg−1) and apigenin (251.6 mg kg−1). In mature leaves, the greatest concentrations were found in July: myricetin (208.44 mg kg−1), quercetin (2883.08 mg kg−1), luteolin (51.22 mg kg−1) and kaempferol (97.25 mg kg−1).
Key words: Psidium guajava; bark; flavonoids; fruit; leaf; floral bud
LITERATURA CITADA
Begum, S., S. Bina, and I. Syed. 2002. Triterpenoids from Psidium guajava leaves. Natural Product Lett. 16: 173-177. [ Links ]
Bilky, A., L. P. Cooper, and G. M. Sapers. 1984. Varietal differences in distribution of quercetin and kaempferol in onion (Allium cepa L.) tissue. J. Food Chem. 32: 274-276. [ Links ]
Burda, S., and W. Oleszek. 2001. Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem. 49: 2774-2779. [ Links ]
Cates, R. G. 1987. Influence of biological rhythms, tissue development, and physiological state of plants and insects on their interactions. In: Insects plant. Proceedings of the 6th International Symposium on insect plant relationships. Labeyrie, V., G. Fabres., D. Lachaise. (eds). Dr. W. Junk publishers, Dordrecht. pp: 175-182. [ Links ]
Conde, E., E. Cadahía, and M. C. Garcia-Vallejo. 1997. Low molecular weight polyphenols in leaves of Eucalyptus camaldulensis, E. globules and E. rudis. Phytochem. Anal. 8: 186-193. [ Links ]
Crozier, A., E. Jensen, E.J. Lean, Morag, S. McDonald. 1997. Quantitative analysis of flavonoids by reversed-phase high-performance liquid chromatography. J. Chromat. 761: 315-321. [ Links ]
Chavez, N., and J. Escudero. 1999. Variation of flavonoid synthesis induced by ecological factors. In: Principles and Practices in Plant Ecology Allelochemical Interactions. Inderjit, Dakshini K MM, Foy CH. Eds. Barcelona, Spain. pp: 267-285. [ Links ]
Chavez, N., J. Escudero, and C. Gutierrez-Merino. 1993. Seasonal variation of exudates of Cistus ladanifer. J. Chem. Ecol. 19: 2577. [ Links ]
Chavez N., J. Escudero, and C. Gutiérrez-Merino. 1997. Role ecological variables in the seasonal variation of flavonoid content of Cistus ladanifer exudate. J. Chem. Ecol. 23: 2577. [ Links ]
Dass, H. C., and D. Praskash. 1981. Phylogenetic affinities on Psidium spp. as studied by flavonoid patterns. National symposium on tropical and subtropical fruits crops. Bangalore, India. pp: 105-119. [ Links ]
El Bulk, R., E. El Fadil, and H. Abdullahi. 1997. Changes in chemical composition of guava fruits during development and ripening. Food Chem. 59: 395-399. [ Links ]
Estiarte, M., J. Penuelas, B. A. Kimball, D. L. Hendrix, P. J. Pinter, G. W. Wall, R. L. LaMorte, and D. J. Hunsaker. 1999. Free air CO2 enrichment of wheat: leaf flavonoid concentration throughout the growth cycle. Physiol. Plant. 105: 423-433. [ Links ]
Feucht W., P. P. S. Schmid, and E. Christ. 1996. Distribution of flavonols in meristematic and mature tissues of Prunus avium shoots. J. Plant Physiol. 125: 1-8. [ Links ]
Gorinstein, S., M. Zemser, R. Haruenkit, R. Chuthakorn, F. Grauer, O. Martin-Belloso, and S. Trakhtenberg. 1999. Comparative content of total polyphenols and dietary fiber in tropical fruits and persimmon. J. Nutr. Biochem. 10: 367-371. [ Links ]
Gutiérrez Gaiten Y. I., M. M. Miranda, R. O. Bilba, N. J. De la Paz, y R. L. Rodríguez. 2000. Suspensión oral antidiarreica de Psidium guajava L. Rev. Cubana Farm. 34: 44-49. [ Links ]
Harborne, J. B. 1984. Phytochemical Methods. Second edition. New York. 288 p. [ Links ]
Jaiarj, P., P. Khoohaswan, Y. Wongkrajang, P. Peungvicha, P. Suriyawong, M. L. Saraya, and O. Ruangsomboon. 1999. Anticough and antimicrobial activities of Psidium guajava Linn. leaf extract. J. Etnopharmacol. 67: 203-212. [ Links ]
Jimenez-Escrig, A., M. Rincon, R. Pulido, and F. Saura-Calixto. 2001. Guava fruit (Psidium guajava L.) as a new source of antioxidant dietary fiber. J. Agric. Food Chem. 29: 5489-5493. [ Links ]
Jordan, M. J., C. A. Margaria, P. E. Shaw, and K. L. Goodner. 2003. Volatile components and aroma active compounds in aqueous essence and fresh pink guava fruit pure (Psidium guajava L.) by GC-MS and multidimensional GC/GC-O. J. Agric. Food Chem. 51: 1421-1426. [ Links ]
Kause, A., V. Ossipov, E. Haukioja, K. Lempa, S. Hanhimaki, and S. Ossipova. 1999. Multiplicity of biochemical factors determining quality of growing birch leaves. Oecologia 120: 102-112. [ Links ]
Keinanen, M., R. Julkunen-Tiitto, P. Mutikainen, M. Walls, J. Ovaska, and E. Vapaavvuori. 1999. Trade offs in phenolic metabolism of silver birch: effects of fertilization, defoliation, and genotype. Ecology 80: 1970-1986. [ Links ]
Krischik, V. A., and R. F. Dennno. 1983. Individual, population, and geographic patterns in plant defense. In: Variable Plants and Hervivores in Natural and Managed Systems. Dennno, R. F., and M. S. McClure (eds). Academic Press, New York, NY. pp: 463-512. [ Links ]
Laitenen, M. L., R. Julkunen-Tiitto, and M. Rousi. 2000. Variation in phenolic compounds within a birch (Betula pendula) population J. Chem. Ecol. 26: 1609-1622. [ Links ]
Lemberkovics, E., G. Petri, H. Nguyen, and I. Máthé. 1996. Relationships between essential oil and flavonoid biosynthesis in sweet basil. Acta Hort. 426: 641-655. [ Links ]
Loponen, J., V. Ossipov, J. Koricheva, E. Haukioja, and K. Pihlaja. 1997. Low molecular mass phenolic in foliage of Betula pubecens Ehrh. In relation to aerial pollution. Chemospher 34: 687-697. [ Links ]
Lozoya, X., M. Meckes, M. Abou-Zaid, J. Tortoriello, C. Nozzolillo, and J. T. Arnason. 1994. Quercetin glycosides in Psidium guajava L. leaves and determination of a spasmolytic principle. Arch. Med. Res. 25: 11-15. [ Links ]
Markham, K. R., K. G. Ryan, S. K. Gould, and K. G. Rickards. 2000. Cell wall sited flavonoid in Lisianthus flower petals. Phytochem. 54: 681-687. [ Links ]
Matsiki, M. 1996. Regulation of the plant phenolics synthesis from biochemistry to ecology and evolution. Aust. J. Bot. 44: 613-634. [ Links ]
Mercadante, A. Z., A. A. Steck, and H. Pfander. 1999. Carotenoids from guava (Psidium guajava L.) isolation and structure elucidation. J. Agric. Food Chem. 47: 145-151. [ Links ]
Miean, K. H., and S. Mohamed. 2001. Flavonoid (Myricetin, Quercetin, Kaempferol, Luteolin, and Apigenin) content of edible tropical plants. J. Agric. Food Chem. 49: 3106-3112. [ Links ]
Misra K., and T. R. Seshadri. 1967. Chemical components of the fruits of Psidium guava. Phytochemistry 7: 641-645. [ Links ]
Ross, H. I. 1999. Medicinal Plants of the World. Ed. Humana Press. Totowa, NJ. pp: 263-281. [ Links ]
SAS. 1989. SAS/STAT User’s guide, Release 6th edition, Versión 6.12. SAS Institute Inc., Cary, NC. USA. 501 p. [ Links ]
Seshadri, R. T., and K. Vasishta 1965. Polyphenols of the leaves of Psidium guajava: quercetin, guaijaverin, leucocyanidin and amritoside. Phytochem. 4: 989-992. [ Links ]
Tomás-Barberan, F., M. M. García-Grau, and F. Tomas-Lorente. 1991. Flavonoid concentration changes in maturing broad bean pods. J. Agric. Food Chem. 39: 255-258. [ Links ]
Vargas, A. D. 2004. Flavonoides en guayaba: distribución anatómica, morfológica y fenológica. Tesis doctoral. Colegio de Postgraduados, Montecillo, Estado de México. 90 p. [ Links ]
Winkel-Shirley, B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126: 485-493. [ Links ]
Recibido: Septiembre de 2004; Aprobado: Agosto de 2005