Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Boletín de la Sociedad Geológica Mexicana
versión impresa ISSN 1405-3322
Bol. Soc. Geol. Mex vol.59 no.1 Ciudad de México jun. 2007
https://doi.org/10.18268/bsgm2007v59n1a8
Artículos
Obtención del relieve digital mediante proyección de luz estructurada en modelos analógicos de extensión
Obtention of digital relief by light projection in analogical models of extension
1Centro de Geociencias, Universidad Nacional Autónoma de México, Campus Juriquilla, CP 76230, Juriquilla, Querétaro, México. mcerca@geociencias.unam.mx
2Centro de Investigaciones en Óptica, A. C., Loma del Bosque 115, Apdo. Postal 1-948. C.P. 37000, León, México
3Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510. México, D.F.
Se muestran resultados del uso de una técnica de proyección de luz estructurada para obtener un mapa digital del relieve durante la deformación por extensión en modelos analógicos que simulan la parte superior de la corteza terrestre. La técnica para obtener el relieve consiste en la proyección de un patrón de luz estructurada en franjas binarias, luz y sombra, sobre la superficie del modelo. El modelo es deformado progresivamente y se obtiene una fotografía digital de la superficie para cada incremento de deformación. El sistema de deformación es de tipo squeeze-box y consiste de una caja de acrílico dentro de la cual se construyen los modelos usando arena y silicón con diferentes diseños experimentales. Una pared vertical móvil dentro de la caja se desplaza a velocidad constante permitiendo la extensión del modelo. Los resultados obtenidos ilustran la utilidad de las técnicas ópticas para analizar la deformación superficial en los modelos físicos y representar los resultados de manera digital.
Palabras clave: modelos analógicos; extensión; comportamiento mecánico; luz estructurada; proyección de franjas; relieve; análisis de imágenes
We present the results of using a projected structured light technique to obtain a digital topographic map in analogue models of deformation during extension. The analogue models simulate extensional processes occurring in the uppermost part of the earth crust. The technique to obtain the relief consists in the projection of a structured light (binary fringes produced by light and shadows) on the surface of the model. The model is deformed and a digital photograph of the surface is obtained for each deformation increment. The deformation apparatus is squeeze-box type and consists of a Plexiglas box in which models are constructed using materials that simulate the mechanical behavior of the earth crust. A vertical moving wall is displaced within the box at a constant and low velocity allowing the extension of the model. The optical array was constructed in Centro de Investigaciones en Óptica. Results obtained illustrate the convenience of the optical techniques to analyze the surface deformation on the physical experiments.
Keywords: analogue models; extension; mechanical stratification; structured light; fringe projection; relief; image analysis
Referencias bibliográficas
Barrientos, B., Cywiak, M., Lee, W. K., y Bryanston-Cross, P., 2004, Measurement of dynamic deformation using a superimposed grating: Revista Mexicana de Física, 50(1), 12-18. [ Links ]
Benes, V., y Davy, P., 1996, Modes of continental lithospheric extension: experimental verification of strain localization processes: Tectonophysics, 254, 69-87. [ Links ]
Bryanston-Cross, P. J., Quan, C., Judge, T. R., 1994, Application of the FFT method for the quantitative extraction of information from high resolution interferometric and photoelastic data: Optics and Laser Technology, 26(3), 147-155. [ Links ]
Byerlee, J. D., 1978, Friction of rocks: Pure and Applied Geophysics, 116, 615- 626. [ Links ]
Corti, G., Bonini, M., Conticelli, S., Innocenti, F., Manetti, P., y Sokoutis, D., 2003, Analogue modelling of continental extension: a review focused on the relations between the patterns of deformation and the presence of magmas: Earth-Science Reviews, 1291, 1-79. [ Links ]
Colletta, B., Letouzey, J., Pinedo, R., Ballard, J.F., y Balé, P., 1991, Computerized X-ray tomography analysis of sandbox models: Examples of thin-skinned thrust systems: Geology, 19, 1063-1067, doi: 10.1130/0091-7613(1991) 0192.3.CO;2. [ Links ]
Fischer, M. P., y Keating, D. P., 2005, Photogrammetric techniques for analyzing displacement, strain, and structural geometry in physical models: Application to the growth of monoclinal basement uplifts: GSA Bulletin, 117 (3-4), 369-382; doi: 10.1130/B25484.1. [ Links ]
Hubbert, M. K., 1937, Theory of scale models as applied to the study of geologic structures: Bulletin of the Geological Society of America, 48, 1459-1520. [ Links ]
Indebetouw, G., 1978, Profile measurement using projection of running fringes: Applied Optics, 17, 2930. [ Links ]
Muller, G., Mach, R., y Kaupper, K., 2001, Mapping of bridge pier scour with projection Moiré: Journal of Hydraulic Research, 39 (5), 1-7. [ Links ]
Persson, K., Garcia-Castellanos, D., ySokoutis, D. , 2004, River transport effects on compressional belts: First results from an integrated analogue-numerical model: Journal of Geophysical Research, 109, B01409, doi:10.1029/2002JB002274 [ Links ]
Ranalli, G., 2001, Experimental tectonics: from Sir James Hall to the present: Journal of Geodynamics, 32 (1-2), 65 - 76. [ Links ]
Ramberg, H., 1981., Gravity, Deformation and Earth’s Crust: Academic, San Diego Calif., 452. [ Links ]
Schreurs, G., Hänni, R., y Vock, P., 2001, Four-dimensional analysis of analog models: Experiments on transfer zones in fold and thrust belts, in Koyi, H. A., and Mancktelow, N. S., eds., Tectonic modelling: A volume in Honor of Hans Ramberg: Boulder, Colorado: Geological Society of America Memoir, 193, 179-190. [ Links ]
Schreurs, G. , Buiter, S. J. H., Boutelier, D., Corti, G. , Costa, E., Cruden, A. R., Daniel, J-M., Hoth, S., Koyi, H., Kukowski, N., Lohrmann, J., Ravaglia, A., Schlische, R. W., Withjack, M. O., Yamada, Y., Cavozzi, C., Delventisette, C., Brady, J. A. E., Hoffmann-Rothe, A., Mengus, J-M., Montanari, D., y Nilforoushan, F., 2006, Analogue benchmarks of shortening and extension experiments.,inBuiter, S. J. H. , and Scheurs, G. (eds). Analogue and numerical modeling of crustal-scale processes: Geological Society, London, Special Publications, 253, 1-27. [ Links ]
Srinivasan, E., Liu H. C., y Alioua, M., 1984, Automated phase-measuring profilometry of 3D diffuse objects: Applied Optics 23, 3105. [ Links ]
Takeda, M., y Mutoh, K., 1983, Fourier transform profilometry for the automatic measurement of 3-D object shapes: Applied Optics, 22, 3977. [ Links ]
Weijemars, R., y Schmeling, H., 1986, Scaling of Newtonian and non- Newtonian fluid dynamics without inertia for quantitative modeling of rock flow due to gravity (including the concept of rheological similarity): Physics of the Earth and Planetary Interiors, 43, 316-330. [ Links ]
Wilkerson, M.S., Marshak, S., y Bosworth, W., 1992, Computerized tomographic analysis of displacement trajectories and three-dimensional fold geometry above oblique thrust ramps: Geology, 20, 439-442. [ Links ]
Willingshofer, E., Sokoutis, D. , y Burg, J-P., 2005, Lithospheric-scale analogue modeling of collision zones with a pre-existing weak zone. In: Gapais, D., Brun, J-P. y Cobbold, P. R. (eds). Deformation Mechanisms, Rheology and Tectonics: from Minerals to the Lithosphere: Geological Society, London, Special Publications, 243, 277-294. [ Links ]
Windecker, R., y Tiziani, H. J., 1995, Topometry of technical and biological objects by fringe projection: Applied Optics, 34, 3644. [ Links ]
Recibido: 02 de Mayo de 2007; Revisado: 21 de Junio de 2007; Aprobado: 06 de Agosto de 2007