Servicios Personalizados
Revista
Articulo
Indicadores
Links relacionados
- Similares en SciELO
Compartir
Computación y Sistemas
versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546
Comp. y Sist. vol.10 no.4 Ciudad de México jun. 2007
Normalization of a 3DShape Similarity Measure with Voxel Representation
Normalización de una Medida de Similitud para Formas 3D con Representación en Voxels
Hermilo Sánchez Cruz1 and Ramón M. Rodríguez Dagnino2
1 Departamento de Sistemas Electrónicos Centro de Ciencias Básicas Universidad Autónoma de Aguascalientes Av. Universidad 940, Aguascalientes, Ags. 20100 Phone: (52 449) 9 10 84 22 hsanchez@correo.uaa.mx
2 Center of Electronics and Telecommunications Monterrey Institute of Technology (ITESM) Av. Eugenio Garza Sada 2501, Col. Tecnológico, CP. 64849 Monterrey, Nuevo León, México. Fax: (81) 8359 7211 rmrodrig@itesm.mx
Article received on April 9, 2007
Accepted on July 08, 2007
Abstract
In this paper we study some properties of 3D objects such as compactness, the work done in object transformations and the number of voxels to be moved in order to normalize a similarity measure of an appropriate set of 3D objects. Voxel representation and scale normalization allow us to find the total distance of a set of voxels from one object to another. For these purposes, the comparison of objects is achieved by superimposing their centers of mass, using principal axes for their orientation, and Hungarian algorithm for optimal matching in bipartite graphs. All these aspects are determinant in obtaining the minimum work that needs to be done in the corresponding transformations. We present experimental results by including irregular objects taken from the human body.
Keywords: Similarity measure; compactness; transforming; positive voxels.
Resumen
En este artículo estudiamos algunas propiedades de objetos 3D tales como la compacidad, el trabajo realizado en la transformación de los objetos y el número de voxels a mover para normalizar una medida de similitud de un conjunto apropiado de objetos 3D. La representación con voxels y la normalización de la escala nos permite encontrar la distancia total de un conjunto de voxels de un objeto a otro. Para estos propósitos, la comparación de los objetos se logra al superponer sus centros de masa, usando ejes principales para su orientación, y el algoritmo Húngaro para apareo óptimo en gráficas bipartitas. Todos estos aspectos son determinantes para obtener el trabajo mínimo realizado en las transformaciones correspondientes. Presentamos resultados experimentales al incluir modelos de objetos tomados del cuerpo humano.
Palabras clave: Medida de similitud; compacidad; transformación; voxels positivos.
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgments
We would like to thank PROMEP program and ITESM, Campus Monterrey, through the Research Chair in Telecommunications, for the provided support in the development of this work.
References
1. G. Lohmann, Volumetric Image Analysis, Wiley & Sons and B. G. Teubner Publishers, New York, NY, (1998). [ Links ]
2. YangLyul Lee, RaeHong Park, A surface based approach to 3D object recognition using a mean field annealing neural network. Pattern Recognition, 35 (2002) 299316. [ Links ]
3. Grégoire Malandain, JeanMarie Rochisani, Matching of 3D Medical Images with a Potential Based Method, Unité de Recherche INRASophia Antipolis. No. 1890 (Mar 1993) 137. [ Links ]
4. Shimon Ullman, Threedimensional object recognition based on the combination of views. Cognition 67 (1998) 2144. [ Links ]
5. A. K. Jain, R. Hoffman, Evidencebased Recognition of 3D Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10 (1988) 783802. [ Links ]
6. Frédéric Jurie, Michel Dhome, Real time tracking of 3D objects: an efficient and robust approach. Pattern Recognition 35 (2002) 317328. [ Links ]
7. D. H. Ballard, C. Brown, Computer Vision, PrenticeHall, Englewood Cliffs, NJ, 1982. [ Links ]
8. E. Bribiesca, Measuring 3D Shape Similarity Using Progressive Transformations. Pattern Recognition, 29 (1996) 11171129. [ Links ]
9. Hermilo SanchezCruz, Ernesto Bribiesca, A Method of optimum transformation of 3D objects used as a measure of shape dissimilarity. Image and Vision Computing Journal. Elsevier. 21 (3), (2003) 10271036. [ Links ]
10. Ernesto Bribiesca, A Measure of Compactness for 3D Shapes. Comput. Math. Appl., 40 (1011) (Nov.Dec. 2000) 12751284. [ Links ]
11. J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, The MacMillan Press Ltd, London and Basingstoke, 1976. [ Links ]
13. Robert M. Haralick and Linda G. Shapiro, Computer and Robot Vision, Addison Wesley, 1993. [ Links ]
14. P.A. van den Elsen, V.J.D. Pol, M. A. Viergever. Medical image matching a review with classification. IEEE Engineering in Medicine and Biology, 12 (4) (1993) 2639. [ Links ]
15. P.J. Besl, N.D. McKay. A method for registration of 3D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2) (1992) 239256. [ Links ]
16. L.G. Brown. A survey of image registration techniques. ACM Computing Surveys, 24 (4) (1992) 325275. [ Links ]