SciELO - Scientific Electronic Library Online

 
vol.11 número1Un Nuevo Método para el Análisis de Estabilidad de Convertidores Resonantes Serie de CD a CD.Definición y Evaluación Empírica de Algoritmos de Voteo para Sistemas Redundantes de Sensado Inteligente índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Computación y Sistemas

versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546

Comp. y Sist. vol.11 no.1 Ciudad de México jul./sep. 2007

 

Artículos

 

A Simple Deterministic Lorenz Chaotic–Based Methodology to Cipher and Decipher Information*

 

Metodología Basada en el Modelo Discreto del Sistema de Lorenz Para Cifrar y Descifrar Información

 

Miguel S. Suárez Castañón1, Carlos Aguilar Ibañez2 and Juan C. Martínez García3

 

1 Escuela Superior de Cómputo del I.P.N. Av. Juan de Dios Bátiz S/N esq. Manuel Othón de Mendizabal 07738 México, D.F., México Tel. +(52)–55–57296000, ext. 52028,
e–mail: sasuarez@prodigy.net.mx

2 Centro de Investigación en Computación del I.P.N. Av. Juan de Dios Bátiz S/N esq. Manuel Othón de Mendizabal
07738 México, D.F., México Tel. +(52)–55–57296000, ext. 56568,

e–mail: caguilar@pollux.cic.ipn.mx

3 Departamento de Control Automático CINVESTAV–IPN 07300 México, D.F., México
e–mail: martinez@ctrl.cinvestav.mx

 

Article received on June 24, 2006; accepted on October 01, 2007

 

* A first version of this work was presented at the 3º Congreso Internacional en Control, Instrumentación Virtual y Sistemas Digitales, August, 2001, pp.20-29.

 

Abstract

We present a secure deterministic cipher and decipher mechanism based on the well–known Lorenz dynamic system. The ciphering process is performed by the combination of the message to be ciphered and the states of the Lorenz dynamic system, which act as the ciphering key. The deciphering process is implemented by the reconstruction of the key, which is generated using a Lorenz system state observer. The observed key is then used in the decipher process in order to recover the ciphered message.

Keywords: Cipher/Decipher, Chaotic System, State Observer, Discrete Lorenz System

 

Resumen

En este artículo presentamos un mecanismo seguro de cifrado y descifrado determinístico basado en el muy conocido sistema dinámico de Lorenz. El proceso de cifrado se lleva a cabo mediante la combinación del mensaje a ser cifrado y los estados del sistema de Lorenz, el cual actúa como llave de cifrado. El proceso de descifrado se realiza mediante la reconstrucción de la llave, que es generada usando un observador de estado del sistema de Lorenz. La llave observada es usada en el proceso de descifrado con el objeto de recuperar el mensaje cifrado

Palabras Clave: Cifrador/Decifrador, Sistema Caótico, Observador de Estado, Sistema de Lorenz

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. Acheson D., "From Calculus to Chaos: An introduction to dynamics", Oxford University Press, 280 pages, 1997.        [ Links ]

2. Alligood K. T., Sauer T. and Yorke J.A., "Chaos: An Introduction to Dynamical System", Springer, 603 pages, 1997.        [ Links ]

3. Tsonis, A. A., "Chaos. From Theory to Applications", Plenun Press, New York, 1992.        [ Links ]

4. Carroll T. L. and Pécora L., "Synchronizing chaotic circuits", IEEE Transactions on Circuits and Systems, vol. 38, (4) (1991), pp. 453–456.        [ Links ]

5. Conrad M., "Algorithmic specification as a technique for computing with informal biological models", Biosystems vol. 13 (1981), pp. 303–320.        [ Links ]

6. Conrad M., "Adaptability",. Plenun Press, New York, 1983.        [ Links ]

7. Cuomo. K. M., Oppenheim A. V. and Strogatz S. H., "Synchronization of Lorenz–Based Chaotic Circuits with Applications to Communications", IEEE Transactions on Circuits and Systems–II: Analog and Digital Signal Processing, vol. 40(10), October 1993, pp. 626–633.        [ Links ]

8. DeMillo R. A., Lynch N. A. and Merritt M. J., "Applied Cryptology, cryptographic protocols, and computer security models", American Mathematical Society, Proceedings of Symposia in Applied Mathematics, vol. 29, 1983.        [ Links ]

9. Devaney R. L., "An Introduction to Chaotic Dynamical System", Addison–Wesley, 1989.        [ Links ]

10. Devaney R. L, "Chaos, Fractals, and Dynamics: Computer Experiments in Mathematics", Addison–Wesley, 1990.        [ Links ]

11. Fradkov A. L. and Markov A. Yu., "Adaptive Synchronization of Chaotic Systems Based on Speed Gradient Method and Passification", IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications, vol. 44(10), 1997, pp. 905–912.        [ Links ]

12. Gerald C. F. and Wheatley P. O., "Applied Numerical Analysis", Addison–Wesley, Fifth edition, 1994.        [ Links ]

13. Holden A. V. and Muhamad M. A., "Chaotic activity in neuronal systems", Cybernetics and Systems Research 2, Ed. R. Trappl, Elsevier, Amsterdam, 1984, pp. 245–50.        [ Links ]

14. Holden A., "Chaos", Princeton University Press, 1986.        [ Links ]

15. Huijberts H. J. C, Nijmeijer H. and Willems R. M. A., "A control perspective on communications using chaotic systems", Proceedings 37th IEEE Conference on Decision and Control, Tampa, Florida December 16–18, 1998, pp. 1957–1962, vol. 2.        [ Links ]

16. Khalil H. K. "Non–linear Systems", Prentice Hall, 3rd. edition, 2002.        [ Links ]

17. Nijmeijer H., and Mareéis M. Y., "An Observer Looks at Synchronization", IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications, vol. 44(10), 1997, pp. 882–890.        [ Links ]

18. Ogorzalek M.J., "Taming Chaos Part I: Synchronization", IEEE T.C.S. Vol. 40, 1993, pp. 693–699.        [ Links ]

19. Pecora L. M. and Carroll T. L., "Driving systems with chaotic signals", Physical Review A. vol. 44, no.4, 1991, pp. 2374–2383.        [ Links ]

20. Pfleeger C, "Security in computing", Prentice–Hall, 1996.        [ Links ]

21. Schneier B., "Applied Cryptography", John Wiley & Sons, 1996.        [ Links ]

22. Sira–Ramírez H. And Cruz–Hernández C, "Synchronization of Chaotic System: A Hamiltonian System Approach", International Journal of Bifurcations and Chaos, vol. 11(5), 2001, pp. 1381–1395.        [ Links ]

23. Special Issue, Systems and Control Letters, Vol. 31, 1997.        [ Links ]

24. Special Issue, Chaos Synchronization and Control: Theory and Applications, IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications, vol. 40, (1993).        [ Links ]

25. Special Issue, "Chaos Synchronization and Control: Theory and Applications", IEEE Transactions on Circuits and Systems–I; Fundamental Theory and Applications, vol. 44, (1997).        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons