Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Computación y Sistemas
versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546
Comp. y Sist. vol.13 no.3 Ciudad de México ene./mar. 2010
Artículos
Analysis of LRD Series with TimeVarying Hurst Parameter
Análisis de Series LRD con Parámetro de Hurst Variante en el Tiempo
Sergio Ledesma Orozco*, Gustavo Cerda Villafaña, Gabriel Aviña Cervantes, Donato Hernández Fusilier and Miguel Torres Cisneros
Department of Electrical and Computer Engineering, University of Guanajuato. *selo@salamanca.ugto.mx
Article received on September 05, 2008
Accepted on January 19, 2009
Abstract
It has been previously shown that actual network traffic exhibits longrange dependence. The Hurst parameter captures the degree of longrange dependence; however, because of the nature of computer network traffic, the Hurst parameter may not remain constant over a long period of time. An iterative method to compute the value of the Hurst parameter as a function of time is presented and analyzed. Experimental results show that the proposed method provides a good estimation of the Hurst parameter as a function of time. Additionally, this method allows the detection on changes of the Hurst parameter for long data series. The proposed method is compared with traditional methods for Hurst parameter estimation. Actual and synthetic traffic traces are used to validate our results. The proposed method allows detecting the changing points on the Hurst parameter, and better results can be obtained when modeling selfsimilar series using several values of the Hurst parameter instead of only one for the entire series. A new graphical tool to analyze longrange dependent series is proposed. Because of the nature of this plot, it is called the transitionvariance plot. This tool may be helpful to distinguish between LAN and WAN traffic. Finally, the software LRD Lab* is deployed to analyze and synthesize longrange dependent series. The LRD Lab includes a simple interface to easily generate, analyze, visualize and save longrange dependent series.
Keywords: Estimation of Hurst parameter, selfsimilarity, longrange dependence, timevarying Hurst parameter.
Resumen
Ha sido previamente propuesto que el tráfico real de redes de computadoras exhibe dependencia de rango amplio. El parámetro de Hurst captura la cantidad de dependencia de rango amplio; sin embargo, debido a la naturaleza del tráfico en redes de computadoras, el parámetro de Hurst puede no permanecer constante durante un periodo largo de tiempo. Un método iterativo para calcular el valor del parámetro de Hurst como una función del tiempo es presentado y analizado. Los resultados experimentales demuestran que el método propuesto proporciona una buena estimación del parámetro de Hurst como una función del tiempo. Adicionalmente, este método permite la detección de cambios en el parámetro de Hurst para series largas. El método propuesto es comparado con métodos tradicionales para estimar el parámetro de Hurst. Series de datos reales y sintéticas son usadas para validar los resultados. El método propuesto permite detectar los puntos de cambio del parámetro de Hurst, y mejores resultados pueden ser obtenidos al modelar series similares a sí mismas usando varios valores del parámetro de Hurst en lugar de solamente uno para toda la serie. Una nueva herramienta gráfica para analizar series con dependencia de rango amplio es propuesta. Debido a la naturaleza de esta gráfica, ésta se llama gráfica de transición de varianza. Esta herramienta puede ser usada para distinguir entre tráfico LAN y WAN. Finalmente, el software LRD Lab* es desarrollado para analizar y sintetizar series con dependencia de rango amplio. El LRD Lab incluye una interfase sencilla para generar, analizar, visualizar y almacenar series con dependencia de rango amplio.
Palabras clave: Estimación del parámetro de Hurst, similar así mismo, dependencia de rango amplio, parámetro de Hurst variante en el tiempo.
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgments
This work was sponsored by CONACYT, DINPO and PROMEP.
References
1. Beran, J. (1992). Statistical methods for data with longrange dependence. Statistical Science, 7(4), 404427. [ Links ]
2. Beran, J., Sherman, R., Taqqu, M. S. & Willinger, W. (1995). Longrange dependence in variablebitrate video traffic. IEEE Transactions on Communications, 43(234), 15661579. [ Links ]
3. Beran, J. & Terrin, N. (1992). Estimation of the longmemory parameter, based on a multivariate central limit theorem. Journal of Time Series Analysis, 15(3), 269278. [ Links ]
4. Cappe, O., Moulines, E., Pesquet, J. C, Petropulu A. P. & Yang, X. (2002). Longrange dependence and heavytail modeling for teletraffic data. IEEE Signal Processing Magazine, 19(3), 1427. [ Links ]
5. Erramilli, A., Narayan, O. & Willinger, W. (1996). Experimental queueing analysis with longrange dependent packet traffic. IEEE/ACM Transactions on Networking, 4(29), 209223. [ Links ]
6. Fox, R. & Taqqu, M. S. (1985). Largesample properties of parameter estimates for strongly dependent stationary Gaussian time series. The Annals of Statistics, 4(2), 517532. [ Links ]
7. Garret, M. W. & Willinger, W. (1994). Analysis, modeling and generation of selfsimilar VBR video traffic. Computer Communications Review, 24(4), 269280. [ Links ]
8. Heyde, C. C. & Gay, R. (1993). Smoothed periodogram asymptotics and estimation for processes and fields with possible longrange dependence. Stochastic Processes and Their Applications, 45(1), 169182. [ Links ]
9. Karagiannis, T., Molle, M. & Faloutsos, M. (2004). Longrange dependence: ten years of Internet traffic modeling, IEEE Internet Computing, 8(5), 5764. [ Links ]
10. Krunz, M. & Matta, I. (2002). Analytical investigation of the bias effect in variancetype estimators for inference of longrange dependence. Computer Networks, 40(3), 445458. [ Links ]
11. Ledesma, S. & Liu, D. (2000). Synthesis of fractional Gaussian noise using linear approximation for generating selfsimilar network traffic. ACM Computer Communication Review, 30(2), 417. [ Links ]
12. Ledesma, S., Liu, D. & Hernandez, D. (2007). Two approximation methods to synthesize the power spectrum of fractional Gaussian noise. Computational Statistics and Data Analysis, 52(2), 10471062. [ Links ]
13. Leland, W. E. & Wilson, D. V. (1991). High timeresolution measurement and analysis of LAN traffic: Implications for LAN interconnection. IEEE Conference on Computer Communications INFOCOM, Florida, USA, 13601366. [ Links ]
14. Leland, W. E., Taqqu, M. S., Willinger W. & Wilson, D. V. (1994). On the selfsimilar nature of Ethernet traffic (extended version). IEEE/ACM Transactions on Networking, 2(1), 115. [ Links ]
15. Mandelbrot, B. B. & Wallis, J. R. (1969). Some longrun properties of geophysical records. Fractals in the earth sciences, New York: Plenum Press. [ Links ]
16. Michiel, H. & Laevens, K. (1997). Teletraffic engineering in a broadband era. Proceedings of the IEEE, 85(12), 20072033. [ Links ]
17. Oppenheim, A. V. & Schafer, R. W. (1989). Discretetime signal processing, Upper Saddle River, N.J., Prentice Hall. [ Links ]
18. Paxson, V. (1997). Fast, approximate synthesis of fractional Gaussian noise for generating selfsimilar network traffic. ACM SIGCOMM Computer Communications Review, 27(5), 518. [ Links ]
19. Paxson, V. & Floyd, S. (1995). Wide area traffic: The failure of Poisson modeling. IEEE/ACM Transactions on Networking, 3(3), 226244. [ Links ]
20. Purczynski, J. & Wlodarski, P. (2005). On fast generation of fractional Gaussian noise. Computational Statistics and Data Analysis, 50(10), 25372551. [ Links ]
21. Ramirez, J. C. & Torres, R. D. (2006). Local and Cumulative Analysis of Selfsimilar Traffic Traces, IEEE Proceedings of the 16th International Conference on Electronics, Communications and Computers (CONIELECOMP'06), 37(1), 2733. [ Links ]
22. Roughan, M., Veitch, D. & Abry, P. (1998). Online estimation of the parameters of longrange dependence. Proceedings of GLOBECOM'98, Sydney, Australia, 37163721. [ Links ]
23. Stoev, S., Taqqu, M. S., Park, C, Michailidis, G. & Marrón, J. S. (2006). LASS: a tool for the local analysis of selfsimilarity. Computational Statistics & Data Analysis, 50(9), 24472471. [ Links ]
24. Tsybakov, B. & Georganas, N. D. (1998). Selfsimilar processes in communications networks. IEEE Transactions on Information Theory, 44(5), 17131725. [ Links ]
25. Veitch, D. & Abry, P. (1998). Wavelet analysis of longrange dependent traffic. IEEE Transactions on Information Theory, 44(1), 215. [ Links ]
26. Veitch, D. & Abry, P. (1999). A wavelet based joint estimator of the parameters of longrange dependence. IEEE Transactions on Information Theory, 45(3), 878897. [ Links ]
27. Zukerman, M., Neame T. D. & Addie, R. G. (2003). Internet traffic modeling and future technology implications. IEEE Conference on Computer Communications INFOCOM, California, USA, 587596. [ Links ]
* The LRD Lab can be downloaded at http://www.fimee.ugto.mx/profesores/sledesma/documentos/index.htm