SciELO - Scientific Electronic Library Online

 
vol.13 número4Construcción de una Solución Óptima para un Problema de Asignación de Rutas, Horarios y Cargas del Mundo RealNuevo Algoritmo Transgénico con Homología, para resolver el problema del OneMax índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Computación y Sistemas

versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546

Comp. y Sist. vol.13 no.4 Ciudad de México abr./jun. 2010

 

Artículos

 

A Robust Evolvable System for the Synthesis of Analog Circuits

 

Un Sistema Evolutivo Robusto para la Síntesis de Circuitos Analógicos

 

Aurora Torres Soto1, Eunice E. Ponce de León Sentí1, Arturo Hernández Aguirre2, María Dolores Torres Soto3 and Elva Díaz Díaz4

 

1 Universidad Autónoma de Aguascalientes. Departamento de Ciencias de la Computación, atorres@correo.uaa.mx, eponce@correo.uaa.mx

2 Centro de Investigación en Matemáticas. Departamento de Ciencias de la Computación, artha@cimat.mx

3 Universidad Autónoma de Aguascalientes. Departamento de Sistemas de Información, mdtorres@correo.uaa.mx

4 Instituto Tecnológico y de Estudios Superiores de Monterrey. Campus Aguascalientes, elva.diaz@itesm.mx

 

Article received on July 12, 2009.
Accepted on November 11, 2009

 

Abstract

This paper presents a group of evolutionary mechanisms for the design of analog circuits, embedded on a genetic algorithm that performs the synthesis of an analog filter. The algorithm interacts with SPICE, to evaluate the fitness of evolved circuits. In order to model an analog circuit, a linear representation is introduced and its corresponding reproduction operators that preserve the valid topological analog circuit class closed. The novelty of this paper consists of the use of a linear representation in combination with the generation mechanism and closed operators that keep the non SPICE simulable circuits below one percent. Furthermore, the concept of preferred values is used into the generation mechanism and genetic operators in order to reduce the gap between the real circuits and the evolvable ones. The performance of the system at designing passive low pass filter is discussed and experiments performed show its efficiency.

Keywords: Analog Circuit Synthesis, Analog Filter Design, Genetic Algorithm, SPICE Simulation.

 

Resumen

Este artículo presenta un grupo de mecanismos evolutivos para el diseño de circuitos analógicos, integrados en un algoritmo genético que desarrolla la síntesis de un filtro analógico. El algoritmo interactúa con SPICE para evaluar la adaptabilidad de los circuitos evolucionados. Para modelar un circuito analógico, se emplea una representación lineal y operadores de reproducción que mantienen cerrada la clase de los circuitos tipológicamente válidos. La novedad de este artículo consiste en el uso de la representación lineal en combinación con el mecanismo de generación y los operadores cerrados, de manera que se conserve el porcentaje de los circuitos no–simulables por SPICE, debajo del 1%. También se ha integrado el concepto de valores comerciales dentro de los mecanismos de generación y operadores genéticos, para reducir las discrepancias entre los circuitos implementados y los circuitos evolucionados. Este trabajo describe el desempeño del sistema mediante el diseño de un filtro pasa–bajas y su eficiencia.

Palabras clave: Síntesis de Circuitos Analógicos, Diseño de Filtros Analógicos, Algoritmo Genético, Simulación con SPICE.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. Ando, S. & Iba, H. (2000). Analog circuit design with a variable length chromosome. 2000 Congress on Evolutionary Computation, La Jolla, CA , USA, vol. 2, 994–1001.        [ Links ]

2. Das A. & Vemuri R. (2007). An Automated Passive Analog Circuit Synthesis Framework using Genetic Algorithms. IEEE Computer Society Annual Symposium on VLSI, ISVLSI '07, Porto Alegre, Brazil, 145–152.        [ Links ]

3. Das, A. (2008). Algorithms for Topology Synthesis of Analog Circuits. PhD Thesis, University of Cincinnati, Cincinnati, USA.        [ Links ]

4. Dastidar, T. R., Chakrabarti, P. P. & Partha R. (2005). A Synthesis System for Analog Circuits Based on Evolutionary Search and Topological Reuse. IEEE Transactions on Evolutionary Computation, 9(2), 211–224.        [ Links ]

5. Goh, C. & Li, Y. (2001). GA Automated Design and Synthesis of Analog Circuits with Practical Constraints. IEEE International Conference on Evolutionary Computation, Seoul, Korea, vol. 1, 170–177.        [ Links ]

6. Hilder, J. & Tyrrell A. (2007). An Evolutionary Platform for Developing Next Generation Electronic Circuits. In Proceedings of the 2007 GECCO Conference Companion on Genetic and Evolutionary Computation, London, United Kingdom, 2483–2488.        [ Links ]

7. Hu, J., Zhong, X. & Goodman, E. D. (2005). Open–ended Robust Design of Analog Filters Using Genetic Programming. 2005 Conference on Genetic and Evolutionary Computation, Washington, DC, USA, 1619–1626.        [ Links ]

8. Huelsman, L. C. (1993). Active and Passive Analog Filter Design: An Introduction. New York: McGraw–Hill, Inc.        [ Links ]

9. Johnson, C. D. (2005). Process Control Instrumentation Technology (8th edition). Englewood Cliffs. New Jersey: Prentice Hall.        [ Links ]

10. Khalifa, Y., Khan, B. & Taha, F. (2007). Multi–objective Optimization Tool for A Free Structure Analog Circuits Design Using Genetic Algorithms and Incorporating Parasitics. 2007 GECCO Conference Companion on Genetic and Evolutionary Computation, London, United Kingdom, 2527–2534.        [ Links ]

11. Koza, J. R., Bennethh, F., Andre, D. & Keane, M. A. (1997). Automated Synthesis of Analog Electrical Circuits by Means of Genetic Programming. IEEE Transactions on Evolutionary Computation, 1(2), 109–128.        [ Links ]

12. Lohn, J. & Colombano, S. (1998). Automated Analog Circuit Synthesis using a Linear Representation. Second International Conference on Evolvable Systems: From Biology to Hardware, Lecture Notes in Computer Science, 1478, 125–133.        [ Links ]

13. Mattiussi, C. & Floreano, D. (2007). Analog Genetic Encoding for the Evolution of Circuits and Networks. IEEE Transactions on Evolutionary Computation, 11(5), 596–607.        [ Links ]

14. Tlelo, E., Duarte, M. A., Reyes, C. A. & Reyes, G. (2007). Automatic Synthesis of Electronics Circuits using Genetic Algorithms. Computación y Sistemas, 10(3), 217–229.        [ Links ]

15. Torres, A., Ponce, E., Torres, M. D. & Luna, F. (2007). Algoritmo Genético aplicado al Diseño Evolutivo de Circuitos Analógicos. Memorias 3er Congreso de Computación Evolutiva. Aguascalientes, México, 13–19.        [ Links ]

16. Torres, A., Ponce, E., Torres, M. D., Díaz, E. & Padilla, F. (2009). Comparison of Two Evolvable Systems in the Automated Analog Circuit Synthesis. 8th International Conference on Artificial Intelligence (MICAI2009). IEEE press. In press.        [ Links ]

17. Zebulum, R. S., Pacheco, M. A. & Vellasco, M. (1998). Comparison of different evolutionary methodologies applied to electronic filter design. 1998 IEEE International Conference on Evolutionary Computation, Piscataway, New Jersey, USA 434–439.        [ Links ]

18. Zebulum, R. S., Pacheco, M. A. & Vellasco, M. (1999). Artificial Evolution of Active Filters: A Case of Study. NASA/DoD Workshop on Evolvable Hardware, IEEE Computer Society, Los Alamitos, CA 66–75.        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons