Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Computación y Sistemas
versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546
Comp. y Sist. vol.14 no.1 Ciudad de México jul./sep. 2010
Artículos
Realtime Discrete Nonlinear Identification via Recurrent High Order Neural Networks
Identificación No Lineal en Tiempo Real usando Redes Neuronales Recurrentes de Alto Orden
Alma Y. Alanis1, Edgar N. Sanchez2 and Alexander G. Loukianov2
1CUCEI, Universidad de Guadalajara, Apartado Postal 5171, Col. Las Aguilas, C.P. 45080, Zapopan, Jalisco, Mexico.
2CINVESTAV, Unidad Guadalajara, Apartado Postal 31438, Plaza La Luna, Guadalajara, Jalisco, C.P. 45091, Mexico. Email: almayalanis@gmail.com
Article received on November 25, 2008
Accepted on March 23, 2009
Abstract
This paper deals with the discretetime nonlinear system identification via Recurrent High Order Neural Networks, trained with an extended Kalman filter (EKF) based algorithm. The paper also includes the respective stability analysis on the basis of the Lyapunov approach for the whole scheme. Applicability of the scheme is illustrated via realtime implementation for a three phase induction motor.
Keywords: Neural identification, Extended Kalman filtering learning, Discretetime nonlinear systems, Three phase induction motor.
Resumen
Este artículo trata el problema de identificación de sistemas no lineales discretos usando redes neuronales recurrentes de alto orden entrenadas con un algoritmo basado en el filtro de Kalman extendido (EKF). El artículo también incluye el análisis de estabilidad para el sistema completo, en las bases de la técnica de Lyapunov. La aplicabilidad del esquema se ilustra a través de la implementación en tiempo real para un motor de inducción trifásico.
Palabras clave: Identificación neuronal, Aprendizaje usando filtro de Kalman Extendido, Sistemas no lineales discretos, Motor de inducción trifásico.
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgement
The authors thank the support of PROMEP/103.5/09/3912 and CONACYT Mexico, through Project 103191Y. They also thank the very useful comments of the anonymous reviewers, which help to improve the paper.
References
1. Chui, C. K., & Chen, G. (1998). Kalman Filtering with RealTime Applications. New York: SpringerVerlag. [ Links ]
2. Cotter, N. E. (1990). The StoneWeiertrass theorem and its application to neural networks. IEEE Transactions Neural Networks. 1(4), 290295. [ Links ]
3. Ge, S. S., Zhang, J. & Lee, T. H. (2004). Adaptive neural network control for a class of MIMO nonlinear systems with disturbances in discretetime. IEEE Transactions on Systems, Man and Cybernetics, Part B, 34(4), 674692. [ Links ]
4. Ghosh, J. & Shin Y. (1992). Efficient HighOrder Neural Networks for Classification and Function Approximation. International. Journal of Neural Systems, 3(4), 323350. [ Links ]
5. Grover, R., & Hwang, P. Y. C. (1992). Introduction to Random Signals and Applied Kalman Filtering. New York: John Wiley and Sons. [ Links ]
6. Haykin, S. (1999). Neural Networks. A comprehensive foundation. New Jersey: Prentice Hall. [ Links ]
7. Kim, Y. H., & Lewis, F. L. (1998). HighLevel Feedback Control with Neural Networks. Singapore: World Scientific. [ Links ]
8. Loukianov, A. G., Rivera, J. & Cañedo J. M. (2002). Discretetime sliding mode control of an induction motor. 2002 IFAC 15th Triennial World Congress, Barcelone, Spain, 10741079. [ Links ]
9. Narendra, K. S., & Parthasarathy, K. (1990). Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks, 1(1), 427. [ Links ]
10. Rovithakis, G. A., & Christodoulou, M. A. (2000). Adaptive Control with Recurrent High Order Neural Networks. New York: Springer Verlag. [ Links ]
11. Sanchez, E. N., Alanis, A. Y. & Chen, G. (2004). Recurrent neural networks trained with Kalman filtering for discrete chaos reconstruction. AsianPacific Workshop on Chaos Control and Synchronization '04, Melbourne, Australia, 5559. [ Links ]
12. Sanchez, E. N., & Ricalde, L. J. (2003). Trajectory tracking via adaptive recurrent neural control with input saturation. International Joint Conference on Neural Networks'03, Portland, USA, vol.1, 359364. [ Links ]
13. Singhal, S., & Wu, L. (1989). Training multilayer perceptrons with the extended Kalman algorithm. In D. S. Touretzky (Ed.), Advances in Neural Information Processing Systems (133140). San Mateo, CA: Morgan Kaufmann. [ Links ]
14. Song, Y., & Grizzle, J. W. (1995). The extended Kalman Filter as Local Asymptotic Observer for DiscreteTime Nonlinear Systems. Journal of Mathematical systems, Estimation and Control, 5(1), 5978. [ Links ]
15. Yu, W., & Li, X. (2003). Discretetime neuro identification without robust modification. IEE Proceedings Control Theory & Applications, 150(3), 311316. [ Links ]
16. Yu, W. (2004). Nonlinear system identification using discretetime recurrent neural networks with stable learning algorithms. Information Sciences Informatics and Computer Science: An International Journal, 158 (1), 131147. [ Links ]