SciELO - Scientific Electronic Library Online

 
vol.14 número2Generación y optimización de controladores difusos utilizando el modelo NEFCONFunciones radiales de base para desenvolvimiento de fase índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Computación y Sistemas

versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546

Comp. y Sist. vol.14 no.2 Ciudad de México oct./dic. 2010

 

Artículos

 

High Order Recurrent Neural Control for Wind Turbine with a Permanent Magnet Synchronous Generator

 

Control neuronal recurrente de alto orden para turbinas de viento con generador síncrono de imán permanente

 

Luis J. Ricalde1, Braulio J. Cruz1 and Edgar N. Sánchez2

 

1 UADY, Facultad de Ingeniería, Av. Industrias no Contaminantes por Periférico Norte Apdo. Postal 115 Cordemex, Mérida, Yucatán, México. E–mail: lricalde@uady.mx

2 CINVESTAV, Unidad Guadalajara, Apartado Postal 31–430, Plaza La Luna, C.P. 45091, Guadalajara, Jalisco México. E–mail: sanchez@gdl.cinvestav.mx

 

Article received March 18 2009.
Accepted on 23 September. 2009.

 

Abstract

In this paper, an adaptive recurrent neural control scheme is applied to a wind turbine with permanent magnet synchronous generator. Due to the variable behavior of wind currents, the angular speed of the generator is required at a given value in order to extract the maximum available power. In order to develop this control structure, a high order recurrent neural network is used to model the turbine–generator model which is assumed as an unknown system; a learning law is obtained using the Lyapunov methodology. Then a control law, which stabilizes the reference tracking error dynamics, is developed using Control Lyapunov Functions. Via simulations, the control scheme is applied to maximum power operating point on a small wind turbine.

Keywords: Neural networks, Wind turbine, Permanent magnet synchronous generator, Maximum power control, Lyapunov methodology.

 

Resumen

En este artículo un esquema de control adaptable neuronal recurrente es aplicado a una turbina de viento con un generador síncrono de imán permanente. Debido al comportamiento variable de las corrientes de viento, la velocidad angular del generador es requerida a un valor específico para poder extraer la máxima potencia disponible. Para desarrollar la estructura de control, una red neuronal recurrente de alto orden es utilizada para modelar el sistema generador–turbina el cual es considerado desconocido; una ley de aprendizaje es obtenida utilizando el método de Lyapunov. Una ley de control, que estabiliza la dinámica del error de seguimiento de trayectoria es desarrollada utilizando Funciones de Control de Lyapunov. Mediante simulación, el esquema de control es aplicado a un punto de operación de máxima potencia en una turbina de viento de baja potencia.

Palabras clave: Redes neuronales, Turbina de viento, Generador síncrono de imán permanente, Control de máxima potencia, Método de Lyapunov.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

The first author thanks PROMEP Project PROMEP/103.5/07/2595 for supporting this research. The second author thanks CONACyT, Mexico, Project FOMIX 66192, for supporting this research.

 

Referencias

1. Baruch, I. & Olivares, J. L. (2005). Implementacion de un multimodelo neuronal jerárquico para identificación y control de sistemas mecánicos, Computación y Sistemas, 9 (1), 28–40.         [ Links ]

2. Chedid, R., Mrad, F. & Basma, M. (1999). Intelligent control of a class of wind energy conversion system, IEEE Transactions on Energy Conversion, 14 (4), 1597–1604.         [ Links ]

3. Hopfield, J. (1984). Neurons with graded responses have collective computational properties like those of two state neurons, Proceedings of the National Academy of Sciences, 81 (10), 3088–3092.         [ Links ]

4. Ioannou, P. A. & Sun, J. (1996). Robust Adaptive Control, Upper Saddle River, New Jersey: Prentice Hall.         [ Links ]

5. Khalil, H. (2002) Nonlinear Systems. Upper Saddle River, New Jersey: Prentice Hall.         [ Links ]

6. Khalil, H. (1996). Adaptive Output Feedback Control of Nonlinear Systems Represented by Input–Output Models, IEEE Transactions on Automatic Control, 41 (2), 177–188.         [ Links ]

7. Kosmatopoulos, E. B., Christodoulou, M. A. and Ioannou, P. A. (1997). Dynamical neural networks that ensure exponential identification error convergence, Neural Networks, 10 (2), 299–314.         [ Links ]

8. Li, H., & Chen, Z. (2008). Overview of different wind generator systems and their comparisons, Renewable power generation, 2 (2), 123 – 138.         [ Links ]

9. Narendra, K. S. & Parthasarathy, K. (1990). Identification and control of dynamical systems using neural networks, IEEE Transaction on Neural Networks, 1(1), 4–27.         [ Links ]

10. Poznyak, A. S., Yu, W., Sanchez, E. N. & Perez, J. P. (1999). Nonlinear adaptive trajectory tracking using dynamic neural networks, IEEE Transaction on Neural Networks, 10 (6), 1402–1411.         [ Links ]

11. Poznyak, A. S., Sanchez, E. N. & Yu, W. (2000). Differential Neural Networks for Robust Nonlinear Control, Singapore: World Scientific.         [ Links ]

12. Ricalde, L. J. & Sanchez, E. N. (2005). Inverse Optimal Nonlinear High Order Recurrent Neural Observer, International Joint Conference on Neural Networks IJCNN, Montreal, Canada, 361–365.         [ Links ]

13. Ricalde, L. J. & Sanchez, E. N. (2008). Output tracking with constrained inputs via inverse optimal adaptive recurrent neural control, Engineering Applications of Artificial Intelligence, 21 (4), 591–603.         [ Links ]

14. Rovitahkis, G. A., & Christodoulou, M. A. (2000). Adaptive Control with Recurrent High–Order Neural Networks. New York: Springer Verlag.         [ Links ]

15. Sanchez, E. N., Alanis, A. Y. & Loukianov, A. G. (2008). Discrete–Time High Order Neural Control Trained with Kalman Filtering. Berlin: Springer Verlag.         [ Links ]

16. Sanchez, E. N. & Ricalde, L., (2003). Chaos Control and Synchronization, with Input Saturation, via Recurrent Neural Networks, Neural Networks, 16 (5–6), 711–717.         [ Links ]

17. Senjyu T., Yona, A., Urasaki, N. & Funabashi, T. (2006). Application of recurrent neural network to long–term–ahead generating power forecasting for wind speed generator, Power Systems Conference and Exposition PSCE, Atlanta, USA, 1260–1265.         [ Links ]

18. Shi, K. L., Li, H. (2004). A novel control of a small wind turbine driven generator based on neural networks, IEEE Power Engineering Society General Meeting, Denver, USA, 1999 – 2005.         [ Links ]

19. Valenciaga, F., Puleston, P. F., Battaiotto, P. E. & Mantz, R. J. (2000). Passivity/Sliding Mode Control of a Stand Alone Hybrid Generation System, IEE Proceedings on Control Theory Applications, 147 (6), 680–686.         [ Links ]

20. Yao, X., Su, X. & Tian, L. (2009). Pitch angle control of variable pitch wind turbines based on neural network PID, 4th IEEE Conference on Industrial Electronics and Applications, ICIEA 2009, Xi'an, China, 3235–3239.         [ Links ]

21. Yin, M., Li, G., Zhou, M. & Zhao C. (2007). Modeling of the wind turbine with a permanent magnet synchronous generator for integration, Power Engineering Society General Meeting, Tampa, USA, 1–6.         [ Links ]

22. Zhang J., Cheng, M. & Chen, Z. (2007). Nonlinear Control for Variable–Speed Wind Turbines with Permanent Magnet Generators, International Conference on Electrical Machines and Systems, Seoul Korea, 324–329.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons