SciELO - Scientific Electronic Library Online

 
vol.14 número2Comparación e implementación de los algoritmos ECLMS y OAECLMS en un DSPUn paradigma proactivo orientado a objetos índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Computación y Sistemas

versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546

Comp. y Sist. vol.14 no.2 Ciudad de México oct./dic. 2010

 

Artículos

 

Remote Monitoring of Internal Bleeding Based on Magnetic Induction and Cellular Phone Technology: A Potential Application in Poor Regions in México

 

Monitoreo remoto de hemorragias internas basado en inducción magnética y tecnología de telefonía celular: una potencial aplicación en regiones pobres de México

 

César A González1, Gaddi Blumrosen2 y Boris Rubinsky3

 

1 University of the Mexican Army/EMGS–Multidisciplinary Research Laboratory, DF, México. National Polytechnic Institute /Superior School of Medicine–Section of Research and Graduate, DF, México. E–mail: c.cesar.gonzalez@gmail.com

2 Center for Bioengineering in the Service of Humanity and Society. School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel. E–mail: gaddi.b@gmail.com

3 Department of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA. E–mail: rubinsky@me.berkeley.edu

 

Article received on January 26, 2009.
Accepted on 12 January, 2010.

 

Abstract

The goal of this study is to introduce the theoretical foundation of a new concept in medical technology that is centered on the cellular phone. The concept was conceived with the needs of medically underserved regions of Mexico in mind. The application introduced here deals with undetected intraperitoneal bleeding that is responsible for the death of one of four women who die at childbirths and that of 20% of accident trauma deaths; even brain trauma. The concept is made possible by the wide availability of cellular phone technology in Mexico, even in the poorest of regions, where other infrastructure is missing. The biophysical principles of the technology are based on the observation that electromagnetic properties of tissue change with disease and internal bleeding. We introduce a new paradigm of medical diagnostic in which inexpensive electromagnetic coils at the patient site are used to take bulk data from a magnetic field that is generated through the tissue or organ of interest. Instead of processing the data with a computer at the remote site the raw data is send via a cellular phone to a central facility that processes the raw data for the entire country or region. The diagnostic is returned in real time to the cellular phone at the patient site, thereby substantially reducing the cost of the devices and with good quality of the diagnostics. Components and functionality required to support the remote monitoring concept by magnetic fields and cell phone technology are presented. The study includes criteria for data processing at the remote site and gives a linear optimal solution to the problem. More advanced data processing methods and calibration of the system will be developed in future. While designed with the needs of Mexico in mind, this concept could become valuable worldwide.

Keywords: Phase Shift, Magnetic Induction, Spectroscopy, Cell Phone, Internal Bleeding.

 

Resumen

El objetivo de este estudio es introducir el fundamento teórico de un nuevo concepto en tecnología médica basado en telefonía celular. El concepto fue concebido teniendo en mente las necesidades médicas de las regiones marginadas de México y confronta el problema clínico que representan las hemorragias internas no detectadas a tiempo, tal problema es responsable de la muerte de una de cada cuatro mujeres que mueren durante el trabajo de parto así como del 20% de muertes por accidentes traumáticos; incluyendo trauma craneoencefálico. El concepto planteado es posible debido a la amplia disponibilidad de tecnología de telefonía celular en México, la cual incluye a las regiones más pobres en donde se carece de otro tipo de infraestructura básica. El principio biofísico de la tecnología está basado en la observación de los cambios en las propiedades electromagnéticas de tejido enfermo y hemorragias internas. Introducimos un nuevo paradigma de diagnóstico médico en el que bobinas electromagnéticas de bajo costo son empleadas en el sitio del paciente para adquirir datos volumétricos de un campo magnético que es generado a través del tejido u órgano de interés. En lugar de procesar los datos con una computadora en el sitio remoto, los datos crudos son enviados vía un teléfono celular a una estación central que procesa los datos crudos para toda una región o inclusive el país entero. El diagnóstico se envía en tiempo real al teléfono celular en el lugar del paciente, reduciendo sustancialmente el costo de los dispositivos e incrementando la calidad de los diagnósticos. Se presentan los componentes y funcionalidad requerida para soportar el concepto de monitoreo a distancia mediante campos magnéticos y tecnología de telefonía celular. El estudio incluye criterios para el procesamiento de datos en el sitio remoto y proporciona una solución lineal óptima del problema. Métodos más avanzados de procesamiento de los datos, así como una calibración del sistema aún representan trabajos a futuro. Si bien el concepto aquí presentado fue diseñado con las necesidades de México en mente, este podría convertirse valioso en todo el mundo.

Palabras clave: Corrimiento de fase, Inducción Magnética, Espectroscopía, Teléfono Celular, Hemorragía Interna.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Referencias

1. Al–Zeiback, S. & Saunders N.H. (1993). A feasibility study of in vivo electromagnetic imaging. Physics in Medicine and Biology, 38(1), 151–160.         [ Links ]

2. Blumrosen, G., González, C.A. & Rubinsky, B. (2009). New wearable body sensor for continuous diagnosis of internal tissue bleeding. The Body sensor networks (BSN) 2009, Berkeley CA, U.S.A. 120–124.         [ Links ]

3. Flores, O., Rubinsky, B. & Gonzalez, C. A. (2008). Experimental Sensitivity Study of Inductive Phase Shift Spectroscopy as Non–Invasive Method for Hypoperfusion vs Bleeding Volumetric Detection in Brain. The 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, Canada, 678–681.         [ Links ]

4. Fusheng, Y., Xiuzhen, D., Xuetao, S., Feng, F., Ruigang, L. & Wanjun, S., (2005). An image monitoring system for intraperitoneal bleeding using electrical impedance tomography and its preliminary results in vivo. 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE–EMBS 2005.Shanghai, China, 1500–1503.         [ Links ]

5. González, C. A., Rojas, R. & Rubinsky, B. (2007). Circular and Magnetron Inductor/Sensor Coils to Detect Volumetric Brain Edema by Inductive Phase Shift Spectroscopy: A Sensitivity Simulation Study. The 13th International conference on Electrical Bioimpedance and 8th Conference on Electrical Impedance Tomography, Graz, Austria. 315–319.         [ Links ]

6. González, C.A. & Rubinsky B. (2006). A theoretical study on magnetic induction frequency dependence of phase shift in oedema and haematoma. Physiological Measurement. 27(9), 829–838.         [ Links ]

7. González, C.A. & Rubinsky, B. (2005). Frequency Dependence of Phase Shift in Edema: a Theoretical Study with Magnetic Induction. The 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Shanghai, China. 3518–3521.         [ Links ]

8. González, C.A. & Rubinsky, B. (2006). The Detection of brain oedema with frequency dependent phase shift electromagnetic induction. Physiological Measurement. 27(6), 539–552.         [ Links ]

9. González, C.A., Horowitz, L. & Rubinsky, B. (2007). In Vivo Inductive Phase Shift Measurement to Detect Intraperitoneal Fluid. IEEE Transaction on Biomedical Engineering. 54(5), 953–956.         [ Links ]

10. González, C.A., Rojas, R., Villanueva, C., & Rubinsky, B. (2007). Inductive Phase Shift Spectroscopy for Volumetric Brain Edema Detection: An Experimental Simulation. The 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Lyon, France. 1, 2346–2349.         [ Links ]

11. Granot, Y., Ivorra, A. & Rubinsky B. (2008). A New Concept for Medical Imaging Centered on Cellular Phone Technology. PLoS ONE. 3(4), e2075.         [ Links ]

12. Grasso, G., Alafaci, C., Passalacqua, M., Morabito, A., Buemi, M., Salpietro, F.M. & Tomasello, F. (2002). Assessment of human brain water content by cerebral bioelectrical impedance analysis: A new technique and its application to cerebral pathological conditions. Neurosurgery. 50(5), 1064–1072.         [ Links ]

13. Griffiths, H. (2001). Magnetic induction tomography. Measurement Science and Technology. 12(8), 1126–1131.         [ Links ]

14. Griffiths, H., Steward, W.R. & Gough, W. (1999). Magnetic induction tomography – A measuring system for biological materials. Annals of New York Academic Science. 873(1), 335–345.         [ Links ]

15. GSMA – Movile World Live. (s.f.). Retrieved from http://www.gsmworld.com/cgi–bin/ni_map.pl?cc=mx&net=rm        [ Links ]

16. Haykin, S. (2002). Adaptive Filter Theory (4th Ed.), Upper Saddle River N.J.: Prentice Hall.         [ Links ]

17. Instituto Nacional de Estadística y Geografía – México. (s.f.). Retrieved from http://dgcnesyp.inegi.org.mx/cgi–win/bdieintsi.exe/NIVA05#ARBOL        [ Links ]

18. Johnson, S., Friedman, C., Cimino, J.J., Clark, T., Hripcsak, G. & Clayton, P.D. (1991). A Conceptual Schema for a central patient database. The 15th Annual Symposium Computational Applied Medicine Care. Washington, D.C.,USA, 381–385.         [ Links ]

19. Korjenevsky, A. V. & Cherepenin, V. A. (1999). Progress in Realization of Magnetic Induction Tomography. Annals of the New York Academy of Sciences. 873, 346–352.         [ Links ]

20. Korzhenevskii, A.V. & Cherepenin, V.A. (1997). Magnetic induction tomography. Journal of Communication Technology and Electronics. 42(4), 469474.         [ Links ]

21. Netz, J., Forner, E. & Haagemann S. (1993). Contactless impedance measurement by magnetic induction– a possible method for investigation of brain impedance. Physiological Measurement. 14 (4), 463–471.         [ Links ]

22. Newell, J.C., Edic, P.M., Ren, X., Larson–Wiseman, J.L. & Danyleiko, M.D. (1996). Assessment of acute pulmonary edema in dogs by electrical impedance imaging. IEEE Transaction on Biomedical Engineering, 43(2), 133–138.         [ Links ]

23. Rojas, R., Rubinsky, B. & Gonzalez, C.A. (2008). The effect of brain haematoma location on volumetric inductive phase shift spectroscopy of the brain with circular and magnetron sensor coils: A numerical simulation study. Physiological Measurement, 29, 255–266.         [ Links ]

24. Rubinsky B. & Gonzalez C. A. (2009). Volumetric Induction Phase Shift Detection System for Determining Tissue Water Content Properties. USA patent 7638341.         [ Links ]

25. Sadleir, R.J. & Fox, R.A. (2001). Detection and quantification of intraperitoneal fluid using electrical impedance tomography. IEEE Transaction on Biomedical Engineering, 48(4), 484–491.         [ Links ]

26. Sistema Nacional de Información de Salud – México. (s.f.). Retrieved from http://sinais.salud.gob.mx/        [ Links ]

27. Tarjan, F.P. & McFee, R. (1968). Electrodeless measurements of the effective resistivity of the human torso and head by magnetic induction. IEEE Transaction on Biomedical Engineering. 15(4), 266–278.         [ Links ]

28. Vidyasankar, V., Pherwani, A.D. & Hannon, R. (2003). Injuries to the abdomen and pelvis. Surgery, 21(8), 185189.         [ Links ]

29. World Health Organization. "About diagnostic imaging". (s.f.). Retrieved from http://www.who.int/diagnostic_imaging/about/en/        [ Links ]

30. World Health Organization. "Essential Diagnostic Imaging". (s.f.).Retrieved from http://www.who.int/eht/en/DiagnosticImaging.pdf        [ Links ]

31. World Health Organization. "Health Technologies–the backbone of Health Services". (s.f.). Retrieved from http://www.who.int/eht/en/Backbone.pdf        [ Links ]

32. World Health Organization. Essential Health Technologies Strategy 2004–2007 (s.f.). Retrieved from http://www.who.int/eht/en/EHT_strategy_2004–2007.pdf        [ Links ]

33. World Health Organization. Manual of Surgical Care. (s.f.). Retrieved from http://www.steinergraphics.com/surgical/introduction.html        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons