Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Computación y Sistemas
versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546
Comp. y Sist. vol.14 no.3 Ciudad de México ene./mar. 2011
Artículos
New HighPerformance Full Adders Using an Alternative Logic Structure
Nuevos sumadores de alto desempeño utilizando una estructura lógica alternativa
Mónico Linares Aranda1 and Mariano Aguirre Hernández2
1 Instituto Nacional de Astrofísica, Óptica y Electrónica Apartado postal 51 y 216, C.P. 72000, Puebla, Pue. México. E mail: mlinares@inaoep.mx
2 Intel Corporation, Communications Research Center, México. Email: mariano.aguirre@intel.com
Article received on March 24, 2009
Accepted on October 20, 2009
Abstract
This paper presents two new highspeed lowpower 1bit fulladder cells using an alternative logic structure, and the logic styles DPL and SRCPL. The adders were designed using electrical parameters of a 0.35µm Complementary MetalOxideSemiconductor (CMOS) process, and were compared with various adders published previously, with regards of powerdelay product. To validate the performance simulation results of one of the proposed adders, an 8bits pipelined multiplier was fabricated using a 0.35µm CMOS technology, and it showed to provide superior performance.
Keywords: Fulladder, Lowpower, Multiplier, Pipeline.
Resumen
En este artículo se presentan dos nuevos sumadores de 1bit de alta velocidad y bajo consumo de potencia, utilizando en su diseño una estructura lógica alternativa y los estilos lógicos de circuitos DPL y SRCPL. Los nuevos sumadores fueron comparados con diversos sumadores recientemente publicados en la literatura considerando el producto potenciaretardo, principal figura de mérito de circuitos aritméticos. Con el fin de validar los resultados obtenidos de simulación, uno de los sumadores fue aplicado al diseño y fabricación de un multiplicador en "pipeline" de 8bits utilizando la tecnología CMOS de 0.35µm. Los resultados experimentales obtenidos mostraron un desempeño superior.
Palabras clave: Sumador completo, Baja potencia, Multiplicador, Pipeline.
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgment
This work was partially supported by ConacytMexico under grant #51511Y and scholarship #112784.
References
1. AbuShama E., Elchouemi A., Sayed S. & Bayoumi M. (1995). An efficient low power basic cell for adders, IEEE International Symposium on Circuits and Systems, Rio de Janeiro, Brazil, 306308. [ Links ]
2. Agarwal S., Pavankumar V. K., & Yokesh R. (2008). Energyefficient, high performance circuits for arithmetic units, 21st International Conference on VLSI Design, Hyderabad, India, 371376. [ Links ]
3. AguirreHernández, M. & LinaresAranda, M. (2004). Lowpower lowvoltage 1bit CMOS full adder for energyefficient multimedia applications. ICED/CASTOUR, Veracruz, México. Retrieved from: http://wwwelec.inaoep.mx/iced04/eng/program.htm [ Links ]
4. Aguirre H. M. (2006). Diseño de un codificador fractal de imágenes con uso eficiente de energía, Tesis de Doctorado, Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla, Pué., México. [ Links ]
5. Aguirre M. & Linares M. (2005), An alternative logic approach to implement highspeed lowpower full adder cells, 18th Symposium on Integrated Circuits and Systems Design SBCCI'05, Florianopolis, Brazil, 166171. [ Links ]
6. Alhalabi B. & AlSheraidah A. (2001), A novel lowpower multiplexerbased full adder cell, 8th IEEE International Conference on Electronics, Circuits and Systems, Malta, 14331436 [ Links ]
7. Chang C. H., Zhang M., & Gu J. (2003). A novel low power low voltage full adder cell. 3rd International Symposium on Image and Signal Processing and Analysis, Rome, Italy, 454458. [ Links ]
8. Chu K. M. & Pulfrey D. L. (1987). A comparison of CMOS circuit techniques: differential cascode voltage switch logic versus conventional logic, IEEE Journal of SolidState Circuits, 22(4), 528532. [ Links ]
9. Fayed A. & Bayoumi M. (2001). A LowPower 10transistor full adder cell for embedded architectures, IEEE International Symposium on Circuits and Systems ISCAS 2001, Sydney, NSW , Australia, 226229. [ Links ]
10. Goel S., Kumar A., & Bayoumi M. A. (2006). Design of robust, energyefficient full adders for deepsubmicrometer design using hybridCMOS logic style, IEEE Transactions on Very Large Scale Integration Systems, 14(12),13091321. [ Links ]
11. Him C., Kim H. & Ha S. (2001). Dynamic voltage scheduling technique for lowpower multimedia applications using buffers, International Symposium on Low Power Electronics and Design. ISLPED'01, Huntington Beach, CA , USA, 3439. [ Links ]
12. Hodges, D. A., Jackson H. G. & Saleh, R. A. (2003). Analysis and Design of Digital Integrated Circuits in Deep Submicron Technology, (Third edition), Boston: McGrawHill Higher Education. HSPICE User Guide: Simulation and analysis, Version B2008.09. Synopsys September 2008. Retrieved_from: http://cseweb.ucsd.edu/classes/wi10/cse241a/assign/hspice_sa.pdf [ Links ]
13. Mahmoud H. A. & Bayoumi M. A. (1999). A 10transistor lowpower highspeed full adder cell, IEEE International Symposium on Circuits and Systems ISCAS 1999, Orlando, FL, USA, 4346. [ Links ]
14. Moalemi V. & AfzaliKusha A. (2007). Subthreshold 1bit full adder cells in sub100 nm technologies, IEEE Computer Society Annual Symposium on VLSI, Porto Alegre, Brasil, 514515. Nanosim User Guide, Version V2004.06, June 2004. Synopsys, June 2004 Retrieved from: http://www.utdallas.edu/~poras/courses/ee6325/lab/nanosim/nanosimug.pdf [ Links ]
15. Nishitani T. (1999). VLSI for digital signal processing lowpower architectures for programmable multimedia processors, IEICE transactions on fundamentals of electronics, communications and computer sciences, E82A(2),184196. [ Links ]
16. Pacheco B. D. & Linares A. M. (2004). A low power and high speed CMOS voltagecontrolled ring oscillator, IEEE International Symposium on Circuits and Systems ISCAS 2004, Vancouver, Canada, (4) 752755. [ Links ]
17. Radhakrishnan D. (2001). Lowvoltage lowpower CMOS full adder, IEE Proceedings on Circuits Devices and Systems, 148(1), 1924. [ Links ]
18. Shams A. M. & Bayoumi M. A. (1998). A structured approach for designing low Power adders, Conference Record of the ThirtyFirst Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA , USA, 1, 757761. [ Links ]
19. Shams, A. M. & Bayoumi M. A. (1998). A novel lowpower building block CMOS cell for adders, IEEE International Symposium on Circuits and Systems ISCAS`98, Monterey, CA , USA, 2, 153 156. [ Links ]
20. Shams A. M., Darwish T. K. & Bayoumi M. A. (2002). Performance analysis of lowpower 1bit CMOS full adder cell, IEEE Transactions on Very Large Scale Integration Systems (VLSI), 10(1), 2029. [ Links ]
21. Singh M., Giacomotto C., Zeydel B. & Oklobdzija V. (2007). Logic style comparison for ultra lowpower operation in 65nm technology, International Workshop on Power and Timing Modeling, Optimization and Simulation, Gothenburg, Sweden, 181190. [ Links ]
22. Suzuki M., Ohkubo N., Yamanaka T., Shimizu A. & Sasaki K. (1993). A 1.5ns 32b CMOS ALU in double passtransistor logic, IEEE Journal of SolidState Circuits, 28(11), 11451151. [ Links ]
23. Weste, N. & Eshraghian, K. (1993). Principles of CMOS VLSI design: a system perspective, Second edition. AddisonWesley. [ Links ]
24. Wey I., Huang C. & Chow H. (2002). A new lowvoltage CMOS 1bit full adder for high performance applications, IEEE AsiaPacific Conference on ASIC 2002, Taipei, Taiwan. 2124. [ Links ]
25. Wu A. & Ng C. K. (1997). High performance low power low voltage adder, Electronic Letters, 33(8), 681682. [ Links ]
26. Yano K., Yamanaka, T., Nishida, T., Saito, M., Shimohigashi, K., & Shimizu, A. (1990). A 3.8ns CMOS 16 × 16b multiplier using complementary passtransistor logic", IEEE Journal of SolidState Circuits, 25(2), 388395. [ Links ]
27. Zhuang N. & Wu H. (1992). A new design of the CMOS full adder, IEEE Journal of SolidState Circuits, 27(5), 840844. [ Links ]
28. Zimmerman R. & Fichtner W. (1997). Lowpower logic styles: CMOS versus passtransistor logic, IEEE Journal of SolidState Circuits, 32(7), 10791090. [ Links ]