Servicios Personalizados
Revista
Articulo
Indicadores
-
Citado por SciELO
-
Accesos
Links relacionados
-
Similares en SciELO
Compartir
Computación y Sistemas
versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546
Comp. y Sist. vol.14 no.4 Ciudad de México abr./jun. 2011
Resumen de tesis doctoral
General Algorithm for the Semantic Decomposition of GeoImages
Un algoritmo general para la descomposición semántica de GeoImágenes
José Giovanni Guzmán Lugo
Graduated on december 4, 2007
Centro de Investigación en Computación,
IPN México D.F., México.
jguzmanl@cic.ipn.mx
Advisor: Serguei Levachkine
Centro de Investigación en Computación,
IPN México D.F., México
sergei@cic.ipn.mx
Abstract
The thesis presents an object oriented methodology for the semantic extraction of a geoimage which is defined by a set of natural language labels. The approach is composed of two main stages: analysis and synthesis. The analysis stage detects the main geographic components of a geoimage by means of the color quantification, geometry and topology of the geospatial objects. The result of this stage is a set of geoimages with intensities that are approximately uniform. The synthesis stage extracts the main geographic objects that have been identified and a labeling process in two levels (general and specialized), which is equivalent to consider both local and global information of a geoimage. The aim of the general labeling process is to associate a label of the adequate thematic to each region, taking into account the RGB characteristics of the image. In order to specialize each geographic object, we have proposed a specialization algorithm that considers geometric and topologic relations among them, represented in geographic application domain ontology. The obtained set of labels describes the geoimage semantics.
Keywords: Image Processing and Computer Vision, Scene Analysis, Object Recognition.
Resumen
Esta tesis presenta una metodología orientada a objetos para la extracción de la semántica de una geoimagen definida por un conjunto de etiquetas en lenguaje natural. La metodología está compuesta de dos grandes etapas: análisis y síntesis. La etapa de análisis detecta los principales elementos geográficos de una geoimagen mediante la cuantificación de características como color, geometría y topología de los objetos geográficos. El resultado de esta etapa es un conjunto de geoimágenes con intensidades de color aproximadamente uniforme. La etapa de síntesis extrae los objetos geográficos que fueron identificados y realiza un proceso de etiquetado en dos niveles (general y especializado), el cual es equivalente a considerar tanto la información global como local de una geoimagen. El propósito del etiquetado general es asociar a cada región una etiqueta de una temática adecuada, tomando en consideración la información RGB de la geoimagen. Para especializar cada objeto geográfico, se propone un algoritmo de especialización que considera la geometría y relaciones topológicas entre los objetos geográficos, tomando como base una ontología de aplicación del dominio geográfico. El conjunto de etiquetas resultante describe la semántica de una geoimagen.
Palabras clave: Procesamiento de imágenes y visión por computadora, análisis de escena, reconocimiento de objetos.
DESCARGAR ARTÍCULO EN FORMATO PDF
References
1. Adams, N. J., & Williams, C. K. I. (2003). Dynamic trees for image modeling. Image Vision Computing, 21(10), 865 877. [ Links ]
2. Angulo, J., & Serra, J. (2003). Mathematical Morphology in Color Spaces Applied to the Analysis of Cartographic Images. In S. Levachkine, J. Serra & M. Egenhofer (Eds.), Second International Workshop on Semantic Processing of Spatial Data, Mexico City, Mexico, 5966. [ Links ]
3. Bezdeck, J.C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York. [ Links ]
4. Borst W. N. (1997). Construction of Engineering Ontologies for Knowledge Sharing and Reuse. Ph.D. Thesis, University of Twente, Enschede, Netherlands. [ Links ]
5. Bradshaw, B. (2000). Semantic Based Image Retrieval: A Probabilistic Approach, Proceedings of the eighth ACM international conference on Multimedia (MULTIMEDIA'00), Los Angeles, CA, USA, 167 176. [ Links ]
6. ByungGyu, K., JaeIck, S., & DongJo, P. (2003). Fast image segmentation based on multiresolution analysis and wavelets. Pattern Recognition Letters, 24 (16), 2995 3006. [ Links ]
7. Junqing Ch., Pappas, T.N., Mojsilovic, A., & Rogowitz, B.E. (2005). Adaptive Perceptual ColorTexture Image Segmentation. IEEE Transactions on Image Processing, 14(10), 1524 1536. [ Links ]
8. Corcho, O., FernándezLópez, M., & GómezPérez, A. (2002). Methodologies, tools and languages for building ontologies. Where is the meeting point?. Data & Knowledge Engineering, 46(1), 41 64. [ Links ]
9. DinYuen, C., ChihHsueh, L., & WenShyong, H. (2005). Image Segmentation with Fast WaveletBased Color Segmentation and Directional Region Growing. IEICE Transactions on Information and Systems, E88D(10), 2249 2259. [ Links ]
10. Fonseca, F., Egenhofer, M., Davis, C., & Câmara, G. (2002). Semantic Granularity in OntologyDriven Geographic Information Systems. Annals of Mathematics and Artificial Intelligence, 36(12), 121 151. [ Links ]
11. Huang J., Kumar S.R., & Zabih R. (1998). An Automatic Hierarchical Image Classification Scheme. Sixth ACM International Conference on Multimedia (MULTIMEDIA '98), Ithaca, NY, USA, 219 228. [ Links ]
12. Levachkine, S. (2003). Raster to Vector Conversion of Color Cartographic Maps. In J. Lladós & Y.B. Kwon (Eds.), Graphics Recognition, Recent Advances and Perspectives, Lecture Notes in Computer Science, 3088, 50 62. [ Links ]
13. Levachkine, S., Velázquez, A., Alexandrov, V., & Kharinov M. (2001). Semantic Analysis and Recognition of RasterScanned Color Cartographic Images. In Dorotea Blostein & YoungBin Kwon (Eds.), 4th International Workshop Graphics Recognition, Algorithms and Applications, Ontario, Canada, 178 189. [ Links ]
14. Jianqing, L; YeeHong Y. (1994). Multiresolution Color Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(7), 689 700. [ Links ]
15. Mueller, M., Segl, & K. Kaufmann, H. (2004). Edge and regionbased segmentation technique for the extraction of large, manmade objects in highresolution satellite imagery. Pattern Recognition, 37(8), 1619 1628. [ Links ]