SciELO - Scientific Electronic Library Online

 
vol.16 número3Procedimiento divide y vencerás para el diseño de territorios comercialesBúsqueda de entorno variable multiobjetivo para resolver el problema de particionamiento de datos espaciales con características poblacionales índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Computación y Sistemas

versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546

Comp. y Sist. vol.16 no.3 Ciudad de México jul./sep. 2012

 

Artículos regulares

 

Building General Hyper-Heuristics for Multi-Objective Cutting Stock Problems

 

Construyendo híper-heurísticas generales para problemas de corte multi-objetivo

 

Juan Carlos Gómez1 and Hugo Terashima-Marín2

 

1Department of Computer Science, KU Leuven, Belgium, juancarlos.gomez@cs.kuleuven.be

2Center for Robotics and Intelligent Systems, Tecnológico de Monterrey, Campus Monterrey, México, terashima@itesm.mx

 

Article received on 09/02/2011;
accepted on 03/11/2011.

 

Abstract

In this article we build multi-objective hyper-heuristics (MOHHs) using the multi-objective evolutionary algorithm NSGA-II for solving irregular 2D cutting stock problems under a bi-objective minimization schema, having a trade-off between the number of sheets used to fit a finite number of pieces and the time required to perform the placement of these pieces. We solve this problem using a multi-objective variation of hyper-heuristics called MOHH, whose main idea consists of finding a set of simple heuristics which can be combined to find a general solution, where a single heuristic is applied depending on the current condition of the problem instead of applying a unique single heuristic during the whole placement process. MOHHs are built after going through a learning process using the NSGA-II, which evolves combinations of condition-action rules producing at the end a set of Pareto-optimal MOHHs. We test the approximated MOHHs on several sets of benchmark problems and present the results.

Keywords: Hyper-heuristics, multi-objective, optimization, evolutionary computation, cutting problems.

 

Resumen

En este artículo se construyen Híper-Heurísticas Multi-Objetivo (MOHH por las siglas en Inglés), utilizando el algoritmo evolutivo multi-objetivo NSGA-II, para solucionar problemas de corte irregular en 2D empleando un esquema bi-objetivo; teniendo un balance entre el número de hojas usadas para ajustar un número finito de piezas y el tiempo requerido para realizar el acomodo de las piezas. Este problema es resuelto usando las MOHHs, cuya idea principal consiste en encontrar un conjunto de heurísticas simples que puedan ser combinadas para encontrar una solución general; donde una heurística simple es utilizada dependiendo de la condición actual del problema, en vez de aplicar una única heurística simple durante todo el proceso de acomodo. Las MOHHs son construidas a través de un proceso de aprendizaje evolutivo utilizando el NSGA-II, el cual evoluciona combinaciones de reglas condición-acción produciendo al final un conjunto de MOHHs Pareto-óptimas. Las MOHHs construidas son probadas en diferentes conjuntos de problemas y los resultados obtenidos son presentados aquí.

Palabras clave. Híper-heurísticas, optimización multi-objetivo, computación evolutiva, problemas de corte.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

This research was supported in part by ITESM under the Research Chair CAT-144 and the CONACYT Project under grant 99695 and the CONACYT postdoctoral grant 290554/37720. A shorter versión of the paper has already appeared inMICAI2010.

 

References

1. Bittle, S.A. & Fox, M.S. (2009). Learning and using hyper-heuristics for variable and valué ordering in constraint satisfaction problems. Annual Conference Companion on Genetic and Evolutionary Computation (GECCO'09), Montreal, Canadá, 2209-2212.         [ Links ]

2. Burke, E., Hart, E., Kendall, G., Newall, J., Ross, P., & Schulenburg, S. (2003). Hyper-heuristics: An Emerging Direction in Modern Research Technology. In Fred G. & Gary A. K. (Ed.), Handbook of Metaheuristics (457-474). Boston: Kluwer Academic Publishers.         [ Links ]

3. Burke, E.K., McCollum, B., Meisels, A., Petrovic, S., & Qu, R. (2007). A Graph Based Hyper-Heuristic for Educational Timetabling Problems. European Journal of Operational Research, 176(1), 177-192.         [ Links ]

4. Burke, E.K., Curtois, T., Hyde, M., Kendall, G., Ochoa, G., Petrovic, S., & Vazquez-Rodriguez, J.A. (2009). HyFlex: A Flexible Framework for the Design and Analysis of Hyper-heuristics. 4th Multi-disciplinary International Scheduling Conference (MISTA 2009), Dublin, Ireland, 790-797.         [ Links ]

5. Chen, C.H., Feiring, B.R., & Chang, T.C.E. (1994). The Cutting Stock Problem, A Survey. International Journal of Production Economics, 36(3), 291-305.         [ Links ]

6. Coello, C.A., Van Veldhuizen, D.A., & Lamont, G.B. (2002). Evolutionary Algorithms for Solving Multi- Objective Problems. New York: Kluwer Academic.         [ Links ]

7. Cowling, P.I., Kendall, G., & Soubeiga, E. (2000). A Hyper-Heuristic Approach for Scheduling a Sales Summit. Selected papers from the Third International Conference on Practice And Theory of Automated Timetabling III, (PATAT'00), Konstanz, Germany, 176-190.         [ Links ]

8. Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2002). A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. Parallel Problem Solving from Nature-PPSN VI, Lecture Notes in Computer Science, 1917,849-858.         [ Links ]

9. Dyckhoff, H. (1990). A Typology of Cutting and Packing Problems. European Journal of Operational Research, 44(2), 145-159.         [ Links ]

10. Fujita, K., Akagi, S., & Hirokawa, N. (1993). Hybrid Approach for Optimal Nesting Using a Genetic Algorithm and a Local Minimisation Algorithm. 1993 ASME design technical conferences--19th Design Automation Conference, Albuquerque, USA, 477-484.         [ Links ]

11. Geiger, M.J. (2008). Bin Packing Under Múltiple Objectives - a Heuristic Approximation Approach. Fourth International Conference on Evolutionary Multi-Criterion Optimization, Matsushima, Japan, 53-56.         [ Links ]

12. Golden, B.L. (1976). Approaches to the Cutting Stock Problem. AME Transactions, 8(2), 256-274.         [ Links ]

13. Hopper, E. & Turton, B.C.H. (2001). An Empirical Study of Meta-Heuristics Applied to 2D Rectangular Bin Packing. Studia Informatica Universalis, 2(1), 77-106.         [ Links ]

14. Kantorovich, L.V. (1960). Mathematical Methods of Organizing and Planning Production. Management Science, 6(4), 366-422.         [ Links ]

15. Lodi, A., Martello, S., & Monaci, M. (2002). Two-dimensional Packing Problems: A Survey. European Journal of Operational Research, 141(2), 241-252.         [ Links ]

16. Muñoz, C, Sierra, M., Puente, J., Vela, C.R., & Varela, R. (2007). Improving Cutting-Stock Plans with Multi-Objective Genetic Algorithms. Second International Work-conference on the Interplay between Natural and Artificial Computation, Part I: Bio-inspired Modeling of Cognitive Tasks (IWINAC '07), La Manga del Mar Menor, Spain, 528-537.         [ Links ]

17. Ross, P. (2005). Hyper-Heuristics. In Burke, E. K. & Kendall, G.(Eds.), Search Methodologies: Introductory Tutorials in Optimization and Decisión Support Methodologies (529-556). New York: Springer.         [ Links ]

18. Ross, P., Schulenburg, S., Marín-Blázquez, J.G., & Hart, E. (2002). Hyper-Heuristics: Learning to Combine Simple Heuristics in Bin-Packing Problems. Conference on Genetic and Evolutionary Computation (GECCO '02), New York, USA, 942-948.         [ Links ]

19. Terashima-Marín, H., Flores-Álvarez, E.J., & Ross, P. (2005). Hyper-Heuristics and Classifier Systems for Solving 2D-Regular Cutting Stock Problems. Conference on Genetic and Evolutionary Computation (GECCO '05), Washington, D.C., USA, 637-643.         [ Links ]

20. Terashima-Marín, H., Farías-Zárate, C.J., Ross, P., & Valenzuela-Rendón, M. (2006). A GA-Based Method to Produce Generalized Hyper-Heuristics for the 2D-Regular Cutting Stock Problem. Conference on Genetic and Evolutionary Computation (GECCO '06), Seattle, USA, 591-598.         [ Links ]

21. Terashima-Marín, H., Ross, P., Farías-Zárate, C. J., López-Camacho, E., & Valenzuela-Rendón, M. (2010). Generalized Hyper-Heuristics for Solving 2D Regular and Irregular Packing Problems. Annals of Operations Research, 179(1), 369-392.         [ Links ]

22. Wäscher, G., Hauβner, H. & Schumann, H. (2007). An Improved Typology of Cutting and Packing Problems. European Journal of Operational Research, 183(3), 1109-1130.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons