Servicios Personalizados
Revista
Articulo
Indicadores
-
Citado por SciELO
-
Accesos
Links relacionados
-
Similares en SciELO
Compartir
Computación y Sistemas
versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546
Comp. y Sist. vol.18 no.4 Ciudad de México oct./dic. 2014
https://doi.org/10.13053/CyS-18-4-1557
Artículos regulares
Periodicity-Based Computation of Optical Flow
Georgii Khachaturov, Silvia Beatriz González Brambila, and Jesús Isidro González Trejo
Departamento de Sistemas, Universidad Autónoma Metropolitana (Azcapotzalco). Mexico. xgeorge@correo.azc.uam.mx
Article received on 27/09/2013.
Accepted on 27/06/2014.
Abstract
The standard Brightness Constancy Equation states spatiotemporal shift invariance of the input data along a local velocity of optical flow. In its turn, the shift invariance leads to a periodic function of a real argument. This allows application of a known test for periodicity to computation of optical flow at random locations. The approach is valid also for higher dimensions: for example, it applies to a sequence of 3D tomography images. The proposed method has a reasonably high accuracy for continuous flow and is noise tolerant. Special attention is paid to weak signal input. It is shown that a drastic reduction in the signal strength worsens the accuracy of estimates insignificantly. For a possible application to tomography, this would lead to an unprecedented diminution of harmful radiation exposure.
Keywords. Optical flow, periodicity-based processing, preventive tomography, night vision.
DESCARGAR ARTÍCULO EN FORMATO PDF
References
1. Anandan, P. (1989). A computational framework and an algorithm for the measurement of visual motion. IJCV, Vol. 2, No.3, pp. 283-310. [ Links ]
2. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M. J., & Szeliski, R. (2011). A Database and Evaluation Methodology for Optical Flow. IJCV, Vol. 92, No. 1, pp.1-31. [ Links ]
3. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., & Szeliski, R. (2013). Middlebury open evaluation system [online] [ Links ].
4. Barron, J.L., Fleet, D.J., & Beauchemin, S. (1994). Performance of optical flow techniques. IJCV, Vol. 12, No. 1, pp. 43-77. [ Links ]
5. Black, M.J. (2013). The Yosemite dataset provided with ground truth [online] [ Links ].
6. Brox, T. & Malik, J. (2010). Large displacement Optical Flow: descriptor matching in variational motion estimation, IEEE TPAMI, doi: 10.1109/TPAMI.2010.143.
7. Bruhn, A., Weickert, J., & Schnorr, C. (2005). Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods. IJCV, Vol. 61, No. 3, pp. 211-231. [ Links ]
8. Fischler, M. & Bolls, R. (1981). Random sample consensus: A paradigm for fitting with application to image analysis and automated cartography. Communication of the ACM, Vol. 24, No. 6, pp. 381-395. [ Links ]
9. Fleet, D.J. & Jepson, A.D. (1990). Computation of component image velocity from local phase information. IJCV. Vol. 5, pp. 77-104. [ Links ]
10. Goldluecke, B. & Cremers, D. (2010). Convex Relaxation for Multilabel Problems with Product Label Spaces. Proc. of European Conf. on Computer Vision (ECCV-2010). [ Links ]
11. Heeger, D.J. (1987). Model for the extraction of image flow. J. Opt. Soc. Am. A 4, pp. 1455-1471. [ Links ]
12. Horn, B. (1986). Robot vision. Cambridge: MIT Press. [ Links ]
13. Horn, B. & Schunck, B.G. (1981). Determining optical flow. Artificial Intelligence, Vol. 17, pp. 185-203. [ Links ]
14. Horowitz, P., & Hill, W. (1989). The Art of Electronics. 2nd edition. Cambridge (UK): Cambridge University Press. [ Links ]
15. Hörmann, W., Leydold, J., & Derflinger, G. (2004). Automatic nonuniform random variate generation. Springer. [ Links ]
16. Jepson, A., & Black, M.J. (1993). Mixture models for optical flow computation. CVPR, pp. 760-761. [ Links ]
17. Jojic, N., & Frey, B. (2001). Learning flexible sprites in video layers. CVPR, Vol. 1, pp. 199-206. [ Links ]
18. Khachaturov, G. (1995). An approach to detection of line elements. Proc. of the Second Asian Conference on Computer Vision (ACCV'95), Vol. 3, pp. 559-563. [ Links ]
19. Khachaturov, G. (2011). A scalable, high-precision, and low-noise detector of shift-invariant image locations. Pat. Rec. Letters, Vol. 32, pp. 145-152, doi: 10.1016/j.patrec.2010.10.002. [ Links ]
20. Lucas, B.D. & Kanade, T. (1981). An iterative image registration technique with an application to stereo vision. Proc. of DAPRA Imaging Understanding Workshop, pp. 121-130. [ Links ]
21. Marr, D. & Ullman, S. (1981). Directional selectivity and its use in early visual processing. Proc. Roy. Soc., London B 211, pp. 151-180. [ Links ]
22. Nagel, H.H. (1989). On a constraint equation for the estimation of displacement rates in image sequences. IEEE Trans PAMI, Vol. 11, pp. 13-30. [ Links ]
23. Otte, M. & Nagel, H.H. (1994). Optical flow estimation: advances and comparisons. Proc. of the European conference on computer vision, pp. 51-60. [ Links ]
24. Owens, J., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A., & Purcell, T. (2007). A Survey of General-Purpose Computation on Graphics Hardware. Computer Graphics Forum, Vol. 26, No. 1, pp. 80-113. [ Links ]
25. Rao, C.R., Toutenburg, H., Fieger, A., Heumann, C., Nittner, T., & Scheid, S. (1999). Linear Models: Least Squares and Alternatives. Springer Series in Statistics. [ Links ]
26. Reddy, B.S. & Chatterji, B.N. (1996). An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. on Image Processing, Vol. 5, No. 8, pp. 1266-1271. [ Links ]
27. Scharstein, D. (2013). Open source code for the flow representation in the colour-coding format [online] [ Links ].
28. Scharstein, D. & Szeliski, R. (2003). High-accuracy stereo depth maps using structured light. Proc. of the IEEE conference on computer vision and pattern recognition, pp. 195-202. [ Links ]
29. Seitz, S., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R. (2006). A comparison and evaluation of multi-view stereo reconstruction algorithms. Proc. of the IEEE conference on computer vision and pattern recognition. Vol. 1, pp. 519-526. [ Links ]
30. Singh. (1990). An estimation theoretic framework for image-flow computation. Proc. of ICCV, Osaka, pp. 168-177. [ Links ]
31. Sudderth, E., Sun, D., & Black, M. (2012). Layered Segmentation and Optical Flow Estimation over Time. CVPR, doi: 10.1109/CVPR.2012.6247873.
32. Tagliasacchi, M. (2007). A Genetic Algorithm for Optical Flow Estimation. Image and Vision Computing, Vol. 25, pp. 141-147, doi: 10.1016/j.imavis.2006.01.021. [ Links ]
33. Uras, S., Girosi, F., Verri, A., & Torre, V. (1988). A computational approach to motion perception. Biol. Cybern., Vol. 60, pp. 79-87. [ Links ]
34. Werlberger, M., Pock, T., & Bischof, H. (2010). Motion estimation with non-local total variation regularization. Proc. of IEEE Conference CVPR-2010. [ Links ]
35. Xu, L., Chen, J., & Jia, J. (2008). A segmentation based variational model for accurate optical flow estimation. Proc. of the ECCV-2008, Vol. 1, pp. 671 -684. [ Links ]
36. Zimmer, H., Bruhn, A., Weickert, J., Valgaerts, L., Salgado, A., Rosenhahn, B., & Seidel, H.P. (2009). Complementary optic flow. Proc. of Int. Conf. on Energy Minimization Methods in Comp.Vis. and Pat.Rec. (EMMCVPR). [ Links ]