SciELO - Scientific Electronic Library Online

 
vol.19 número1Algoritmo aleatorizado basado en distribuciones deslizantes para el problema de planificación en sistemas GridSistema de reconocimiento de patrones de sustancias químicas cerebrales basado en minería de datos índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Computación y Sistemas

versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546

Comp. y Sist. vol.19 no.1 Ciudad de México ene./mar. 2015

https://doi.org/10.13053/CyS-19-1-1570 

Artículos

 

Clasificación de señales encefalográficas mediante redes neuronales artificiales

 

Classification of Encephalographic Signals using Artificial Neural Networks

 

Roberto Sepúlveda1, Oscar Montiel1, Gerardo Díaz1, Daniel Gutierrez1 y Oscar Castillo2

 

1 Instituto Politécnico Nacional-CITEDI, Tijuana, B.C., México. rsepulvedac@ipn.mx, oross@ipn.mx, gdiaz@citedi.mx, dgutierrez@citedi.mx

2 Instituto Tecnológico de Tijuana, Tijuana, B.C., México. ocastillo@tectijuana.mx

Autor de correspondencia es Roberto Sepúlveda.

 

Article received on 04/10/2013.
Accepted on 26/11/2014.

 

Resumen

Para la clasificación de las señales del parpadeo y dolor muscular en el brazo derecho ocasionado por un agente externo, se proponen dos modelos de arquitecturas de redes neuronales artificiales, específicamente del tipo perceptron multicapa y sistema de inferencia neurodifuso adaptativo, ambos modelos utilizan aprendizaje supervisado. Se utilizan series de tiempo obtenidas del parpadeo y electroencefalografías de 15 personas en el rango de 23 a 25 años de edad, para generar una base de datos que se divide en dos conjuntos de datos: entrenamiento y prueba. Los resultados experimentales en el dominio del tiempo y de la frecuencia, de 50 pruebas aplicadas a cada modelo de red, muestran que ambas propuestas de arquitecturas de redes neuronales producen resultados exitosos.

Palabras clave: EEG, BCI, interface cerebro-computadora, parpadeo, red neuronal artificial, FFT.

 

Abstract

For the signal classification of eye blinking and muscular pain in the right arm caused by an external agent, two models of artificial neural network architectures are proposed, specifically, the perceptron multilayer and an adaptive neurofuzzy inference system. Both models use supervised learning. The ocular and electroencephalographic time-series of 15 people in the range of 23 to 25 years of age are used to generate a data base which was divided into two sets: a training set and a test set. Experimental results in the time and frequency domain of 50 tests applied to each model show that both neural network architecture proposals for classification produce successful results.

Keywords. EEG, BCI, brain-computer interface, blink, artificial neural network, FFT.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Referencias

1. Arias, G. & Felipe, H. (2009). Detección y clasificación de artefactos en señales EEG. Memorias de STSIVA '09, Universidad Tecnológica De Pereira.         [ Links ]

2. Chambayil, B., Singla, R., & Jha, R. (2010). Virtual keyboard BCI using eye blinks in EEG. Wireless and Mobile Computing, Networking and Communications (WiMob), 2010 IEEE 6th International Conference on, pp. 466-470.         [ Links ]

3. Chang, B.-C., Lim, J.-E., Kim, H.-J., & Seo, B.-H. (2007). A study of classification of the level of sleepiness for the drowsy driving prevention. SICE, 2007 Annual Conference, pp. 3084-3089.         [ Links ]

4. Chang, P., Arendt-Nielsen, L., Graven-Nielsen, T., Svensson, P., & Chen, A. (2001). Different EEG topographic effects of painful and non-painful intramuscular stimulation in man. Experimental Brain Research, Vol. 141, pp. 195-203.         [ Links ]

5. Chang, P.-F., Arendt-Nielsen, L., Graven-Nielsen, T., & Chen, A. C. (2003). Psychophysical and {EEG} responses to repeated experimental muscle pain in humans: Pain intensity encodes {EEG} activity. Brain Research Bulletin, Vol. 59, No. 6, pp. 533 - 543.         [ Links ]

6. Chang, P. F., Arendt-Nielsen, L., Graven-Nielsen, T., Svensson, P., & Chen, A. C. (2004). Comparative EEG activation to skin pain and muscle pain induced by capsaicin injection. International journal of psychophysiology, Vol. 51, No. 2, pp. 117-126.         [ Links ]

7. Chen, A. & Rappelsberger, P. (1994). Brain and human pain: Topographic EEG amplitude and coherence mapping. Brain Topography, Vol. 7, No. 2, pp. 129-140.         [ Links ]

8. De la O Chávez, J. R. (2008). BCI para el control de un cursor basada en ondas cerebrales. Master's thesis, Universidad Autonoma Metropolitana.         [ Links ]

9. Haykin, S. (1999). Neural Networks. A Comprehensive Foudation. Second Edition. Prentice Hall.         [ Links ]

10. Hirsch, L. & Richard, B. (2010). Atlas of EEG in Critical Care, chapter EEG basics. Wiley, pp. 1-7.         [ Links ]

11. Jyh-Shing Roger Jang, Chuen-Tsai Sun, & Sun, Eiji Mizutani (1997). Neuro-Fuzzy and Soft Computing. A Computational Approach to Learning and Machine Intelligence. Prentice Hall.         [ Links ]

12. Lin, J.-S., Chen, K.-C., & Yang, W.-C. (2010). EEG and eye-blinking signals through a brain-computer interface based control for electric wheelchairs with wireless scheme. New Trends in Information Science and Service Science (NISS), 2010 4th International Conference on, pp. 731-734.         [ Links ]

13. Pera, D. L., Svensson, P., Valeriani, M., Watanabe, I., Arendt-Nielsen, L., & Chen, A. C. (2000). Long-lasting effect evoked by tonic muscle pain on parietal {EEG} activity in humans. Clinical Neurophysiology, Vol. 111, No. 12, pp. 2130 - 2137.         [ Links ]

14. Pérez, M. & Luis, J. (2009). Comunicación con Computador mediante Señales Cerebrales. Aplicación a la Tecnología de la Rehabilitación. Ph.D. thesis, Universidad Politécnica de Madrid.         [ Links ]

15. Sharbrough F, Chatrian G-E, Lesser RP, Luders H, Nuwer M, & Picton TW (1991). American electroencephalographic society guidelines for standard electrode position nomenclature. J. Clin. Neurophysiol, Vol. 8, No. 200, pp. 2.         [ Links ]

16. Sovierzoski, M., Argoud, F., & De Azevedo, F. (2008). Identifying eye blinks in EEG signal analysis. Information Technology and Applications in Biomedicine, 2008. ITAB 2008. International Conference on, pp. 406-409.         [ Links ]

17. Sovierzoski, M., Argoud, F., & De Azevedo, F. (2008). Identifying eye blinks in EEG signal analysis. Information Technology and Applications in Biomedicine, 2008. ITAB 2008. International Conference on, pp. 406-409.         [ Links ]

18. Venkataramanan, S. & Kalpakam, N. V. (2004). Aiding the detection of alzheimer's disease in clinical electroencephalogram recording by selective denoising of ocular artifacts. Communications, Circuits and Systems, 2004. ICCCAS 2004. 2004 International Conference on, volume 2, pp. 965-968.         [ Links ]

19. Wilamowski, B. (2009). Neural network architectures and learning algorithms. Industrial Electronics Magazine, IEEE, Vol. 3, No. 4, pp. 56-63.         [ Links ]

20. Wilamowski, B. M. (2003). Neural network architectures and learning algorithms. International Conference on Industrial Technology, pp. TU1-TU12.         [ Links ]

21. Wu, J., Ifeachor, E., Allen, E., Wimalaratna, S., & Hudson, N. (1997). Intelligent artefact identification in electroencephalography signal processing. Science, Measurement and Technology, IEE Proceedings, Vol. 144, No. 5, pp. 193-201.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons