SciELO - Scientific Electronic Library Online

 
vol.19 número2EditorialHierarchical Contour Shape Analysis índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Computación y Sistemas

versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546

Comp. y Sist. vol.19 no.2 Ciudad de México abr./jun. 2015

https://doi.org/10.13053/CyS-19-2-2068 

Artículos

 

A Super-Resolution Image Reconstruction using Natural Neighbor Interpolation

 

Christian J. Enríquez-Cervantes y Ramón M. Rodríguez-Dagnino

 

Tecnológico de Monterrey, Electrical and Computing Engineering Department, Monterrey, México. christian.enriquez@itesm.mx, rmrodrig@itesm.mx

Corresponding author is Ramón M. Rodríguez-Dagnino.

 

Article received on 27/10/2014.
Accepted on 21/04/2015.

 

Abstract

A super-resolution image reconstruction algorithm using natural neighbor interpolation is proposed and its performance is evaluated. The algorithm is divided into two stages: image registration and the reconstruction of a high-resolution color image. In the first stage, as shifts between images are usually unknown, the algorithm computes an approximation of these displacements by solving the system of linear equations proposed by Keren, Peleg, and Brada, then the pixels of all low-resolution images are mapped into a high-resolution grid by computing the new coordinates using the motion vectors. In the second stage, the pixel values that match the high-resolution grid are interpolated using natural neighbor interpolation which is a weighted average interpolation method for scattered data, based in the areas of the Voronoi polygons of the neighboring pixels. Finally, the proposed natural neighbor super-resolution algorithm is compared with some popular super-resolution algorithms presented in literature.

Keywords: Super-resolution, natural neighbor interpolation, motion estimation, high-resolution image reconstruction.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. Alfeld, P. (1989). Scattered data interpolation in three or more variables. In Lyche, T. & Schumaker, L. L., editors, Mathematical methods in computer aided geometric design. Academic Press Professional, Inc., San Diego, CA, USA, pp. 1-33.         [ Links ]

2. Amidror, I. (2002). Scattered data interpolation methods for electronic imaging systems: a survey. Journal of Electronic Imaging, Vol. 11, No. 2, pp. 157-176.         [ Links ]

3. Anton, F., Mioc, D., & Fournier, A. (2001). Reconstructing 2d images with natural neighbour interpolation. The Visual Computer, Vol. 17, No. 3, pp. 134-146.         [ Links ]

4. Barnea, D. I. & Silverman, H. F. (1972). A class of algorithms for fast digital image registration. IEEE Transactions on Computers, Vol. C-21, No. 2, pp. 179-186.         [ Links ]

5. Begin, I. & Ferrie, F. P. (2006). Comparison of super-resolution algorithms using image quality measures. Proceedings of the The 3rd Canadian Conference on Computer and Robot Vision, IEEE Computer Society, Los Alamitos, CA, USA.         [ Links ]

6. Bracewell, R. (2000). The basic theorems. In The Fourier Transform and its Applications, 3th edition, chapter 6. McGraw-Hill, New York, NY, USA, pp. 105-135.         [ Links ]

7. Brown, L. G. (1992). A survey of image registration techniques. ACM Computing Surveys, Vol. 24, No. 4, pp. 325-376.         [ Links ]

8. Fan, Q., Efrat, A., Koltun, V., Krishnan, S., & Venkatasubramanian, S. (2005). Hardware-assisted natural neighbor interpolation. Proc. 7th Workshop on Algorithm Eng. and Experiments (ALENEX), Vancouver, BC, Canada, pp. 111-120.         [ Links ]

9. Farin, G. (1990). Surfaces over dirichlet tessellations. Comput. Aided Geom. Des., Vol. 7, No. 1-4, pp. 281-292.         [ Links ]

10. Frigo, M. & Johnson, S. G. (2005). The design and implementation of FFTW3. Proceedings of the IEEE, Vol. 93, No. 2, pp. 216-231. Special issue on "Program Generation, Optimization, and Platform Adaptation".         [ Links ]

11. Hsieh, C.-C., Huang, Y.-P., Chen, Y.-Y., Fuh, C.-S., & Ho, W.-J. (2008). Video super-resolution by integrating sad and ncc matching criterion for multiple moving objects. Proceedings of the Tenth IASTED International Conference on Computer Graphics and Imaging, CGIM '08, ACTA Press, Anaheim, CA, USA, pp. 172-177.         [ Links ]

12. Irani, M. & Peleg, S. (1990). Super resolution from image sequences. Proceedings of 10th International Conference on Pattern Recognition (ICPR), volume 2, Atlantic City, NJ, USA, pp. 115-120.         [ Links ]

13. Irani, M. & Peleg, S. (1991). Improving resolution by image registration. CVGIP: Graphical Models and Image Processing, Vol. 53, No. 3, pp. 231-239.         [ Links ]

14. Keren, D., Peleg, S., & Brada, R. (1988). Image sequence enhancement using sub-pixel displacements. Proceedings IEEE Conference on Computer Vision and Pattern Recognition, Ann Arbor, MI, USA, pp. 742-746.         [ Links ]

15. Lertrattanapanich, S. & Bose, N. (2002). High resolution image formation from low resolution frames using delaunay triangulation. IEEE Transactions on Image Processing, Vol. 11, No. 12, pp. 1427-1441.         [ Links ]

16. Marcel, B., Briot, M., & Murrieta, R. (1997). Calcul de translation et rotation par la transformation de fourier. TS. Traitement du signal, Vol. 14, No. 2, pp. 135-149.         [ Links ]

17. Park, S. C., Park, M. K., & Kang, M. G. (2003). Super-resolution image reconstruction: a technical overview. IEEE Signal Processing Magazine, Vol. 20, No. 3, pp. 21-36.         [ Links ]

18. Pham, T. Q., van Vliet, L. J., & Schutte, K. (2006). Robust fusion of irregularly sampled data using adaptive normalized convolution. EURASIP J. Appl. Signal Process., Vol. 2006, pp. 236-236.         [ Links ]

19. Philip, B. & Updike, P. (2005). GCar dataset images taken for Caltech SURF project.         [ Links ]

20. Phillips, D. (2000). Geometric operations. In Image Processing in C, Electronic, 2nd edition, chapter 13. Lawrence, Kansas: R & D Publications, pp. 197-208.         [ Links ]

21. Piper, B. (1993). Geometric modelling. In Farin, G., Hagen, H., Noltemeier, H., & Knödel, W., editors, Properties of local coordinates based on Dirichlet tessellations. Springer-Verlag, London, UK, UK, pp. 227-239.         [ Links ]

22. Reddy, B. & Chatterji, B. (1996). An fft-based technique for translation, rotation, and scale-invariant image registration. IEEE Transactions on Image Processing, Vol. 5, No. 8, pp. 1266-1271.         [ Links ]

23. Sibson, R. (1980). A vector identity for the Dirichlet tessellation. Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 87, pp. 151-155.         [ Links ]

24. Sibson, R. (1981). A brief description of natural neighbour interpolation. In Barnett, V., editor, Interpreting multivariate data, chapter 2. John Wiley & Sons, Chichester, UK, pp. 21-36.         [ Links ]

25. Sloan, S. & Houlsby, G. (1984). An implementation of Watson's algorithm for computing 2-dimensional delaunay triangulations. Advances in Engineering Software, Vol. 6, No. 4, pp. 192-197.         [ Links ]

26. Vandewalle, P., Kovacevic, J., & Vetterli, M. (2009). Reproducible research in signal processing. IEEE Signal Processing Magazine, Vol. 26, No. 3, pp. 37-47.         [ Links ]

27. Watson, D. F. (1981 ). Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes. The Computer Journal, Vol. 24, No. 2, pp. 167-172.         [ Links ]

28. Watson, D. F. (1992). Contouring: A Guide to the Analysis and Display of Spatial Data, volume 10. Pergamon Press, New York, USA.         [ Links ]

29. Watson, D. F. (2002). Compound signed decomposition, the core of natural neighbour interpolation in n-dimensional space. (unpublished manuscript), pp. 1-15.         [ Links ]

30. Yongchang, C. & Hehua, Z. (2004). A mesh-less local natural neighbour interpolation method for stress analysis of solids. Engineering Analysis with Boundary Elements, Vol. 28, No. 6, pp. 607-613.         [ Links ]

31. Zomet, A., Rav-Acha, A., & Peleg, S. (2001). Robust super-resolution. Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, volume 1, pp. 1645-1650.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons