SciELO - Scientific Electronic Library Online

 
vol.19 número3Intelligent Waste SeparatorHW/SW Co-Design of a Specific Accelerator for Robotic Computer Vision índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Computación y Sistemas

versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546

Comp. y Sist. vol.19 no.3 Ciudad de México jul./sep. 2015

 

Artículos

 

Cockpit Design for First Person View Flight for a Remotely Operated Quadrotor Helicopter

 

Héctor A. Pérez-Sánchez1, Edward U. Benítez-Rendón1, Bernardino Castillo-Toledo1, Alexander G. Loukianov1, Luis F. Luque-Vega2, Maarouf Saad 3

 

1 Instituto Politécnico Nacional, CINVESTAV Campus Guadalajara, Department of Automatic Control, Zapopan, Jalisco, México. haperez@gdl.cinvestav.mx, eubenitez@gdl.cinvestav.mx, toledo@gdl.cinvestav.mx, louk@gdl.cinvestav.mx

2 ITESO University, Department of Electronics, Systems and Informatics, Tlaquepaque, Jalisco, México. luisluque@iteso.mx

3 École de Technologie Supérieure, Power Electronics and Industrial Control Research Group, Montreal, Quebec, Canadá. Maarouf.Saad@etsmtl.ca

Corresponding author is Héctor A. Pérez-Sánchez.

 

Article received on 07/12/2014.
Accepted on 15/04/2015.

 

Abstract

Recently, technological advances have been focused on the cockpit of modern unmanned aerial vehicles (UAVs) in order to reduce pilot requirements and workload to operate them. First person view (FPV) flight represents a key point when UAVs perform tasks beyond the line of sight. This paper presents the design and implementation of a cockpit for a remotely operated quadrotor. We have developed an intuitive graphical user interface (GUI) for piloting the quadrotor encompassing the most relevant flight instruments as an altimeter, attitude, heading, and ground speed indicators. The GUI is developed using the programming development environment LabVIEW®.

Keywords: Quadrotor, cockpit, block control, LabVIEW®.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

This work was supported by the National Council on Science and Technology (CONACYT), Mexico, under grants 127858 and 129591.

 

References

1. Righetti, X., Cardin, S., Thalmann, D., & Vexo, F. (2007). Immersive flight for surveillance applications. IEEE Symposium on 3D User Interfaces, (3DUI'07), doi: 10.1109/3DUI.2007.340786.         [ Links ]

2. Marine, P.M. & Rawashdeh, O.A. (2010). A First-Person View System for Remotely Operated Vehicles Using a Fisheye-Lens. AIAA Infotech at Aerospace, Atlanta, Georgia, doi: 10.2514/6.20103513.         [ Links ]

3. Chitrakaran, V., Dawson, D., Kannan, H., & Feemster, M. (2006). Vision Assisted Autonomous Path Following for Unmanned Aerial Vehicles. 45th IEEE Conference on Decision and Control, pp. 63-68.         [ Links ]

4. Neff, A., Lee, D., Chitrakaran, V., Dawson, D., & Burg, T. (2007). Velocity control for a quad-rotor uav fly-by-camera interface. IEEE Southeast Conf., pp. 273-278, doi: 10.1109/SECON.2007.342901.         [ Links ]

5. Lee, D., Chitrakaran, V., Burg, T., Dawson, D., & Xian, B. (2007). Control of a remotely operated quadrotor aerial vehicle and camera unit using a fly-the-camera perspective. 46th IEEE Conference on Decision and Control, pp. 6412-6417, doi: 10.1109/CDC.2007.4434940.         [ Links ]

6. Zul Azfar, A. & Hazry, D. (2011). Simple GUI design for monitoring of a remotely operated quadrotor unmanned aerial vehicle (UAV). 7th International IEEE Colloquium on Signal Proc. and its Applications (CSPA), pp. 23-27, doi: 10.1109/CSPA.2011.5759836.         [ Links ]

7. Bouabdallah, S. & Siegwart, R. (2005). Backstepping and Sliding-mode Techniques Applied to an Indoor Micro Quadrotor. IEEE International Conference on Robotics and Automation (ICRA 2005), pp. 2247-2252, doi: 10.1109/ROBOT.2005.1570447.         [ Links ]

8. Loukianov, A.G. (2002). Robust block decomposition sliding mode control design. Mathematical Problems in Engineering, Vol. 8, pp. 349-365, doi: 10.1080/10241230306732.         [ Links ]

9. Luque-Vega, L., Castillo-Toledo, B., & Loukianov, A.G. (2012). Robust block second order sliding mode control for a quadrotor. Journal of the Franklin Institute (Advances in Guidance and Control of Aerospace Vehicles using Sliding Mode Control and Observation Techniques), Vol. 349, No. 2, pp. 719-739.         [ Links ]

10. Luque-Vega, L.F. (2010). Design, Construction and Control of a Quadrotor Helicopter. Master thesis, CINVESTAV del IPN Unidad Guadalajara, Guadalajara, Jalisco, México.         [ Links ]

11. Federal Aviation Administration (2008). Pilot's Handbook of Aeronautical Knowledge. Government Printing Office, United States.         [ Links ]

12. Gopi S. (2005). Global Positioning System: Principles And Applications. McGraw-Hill Education, India.         [ Links ]

13. Langley, R.B. (1999). Dilution of precision. GPS world, Vol. 10, pp. 52-59.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons