Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Computación y Sistemas
versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546
Comp. y Sist. vol.19 no.3 Ciudad de México jul./sep. 2015
Artículos
Cockpit Design for First Person View Flight for a Remotely Operated Quadrotor Helicopter
Héctor A. Pérez-Sánchez1, Edward U. Benítez-Rendón1, Bernardino Castillo-Toledo1, Alexander G. Loukianov1, Luis F. Luque-Vega2, Maarouf Saad 3
1 Instituto Politécnico Nacional, CINVESTAV Campus Guadalajara, Department of Automatic Control, Zapopan, Jalisco, México. haperez@gdl.cinvestav.mx, eubenitez@gdl.cinvestav.mx, toledo@gdl.cinvestav.mx, louk@gdl.cinvestav.mx
2 ITESO University, Department of Electronics, Systems and Informatics, Tlaquepaque, Jalisco, México. luisluque@iteso.mx
3 École de Technologie Supérieure, Power Electronics and Industrial Control Research Group, Montreal, Quebec, Canadá. Maarouf.Saad@etsmtl.ca
Corresponding author is Héctor A. Pérez-Sánchez.
Article received on 07/12/2014.
Accepted on 15/04/2015.
Abstract
Recently, technological advances have been focused on the cockpit of modern unmanned aerial vehicles (UAVs) in order to reduce pilot requirements and workload to operate them. First person view (FPV) flight represents a key point when UAVs perform tasks beyond the line of sight. This paper presents the design and implementation of a cockpit for a remotely operated quadrotor. We have developed an intuitive graphical user interface (GUI) for piloting the quadrotor encompassing the most relevant flight instruments as an altimeter, attitude, heading, and ground speed indicators. The GUI is developed using the programming development environment LabVIEW®.
Keywords: Quadrotor, cockpit, block control, LabVIEW®.
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgements
This work was supported by the National Council on Science and Technology (CONACYT), Mexico, under grants 127858 and 129591.
References
1. Righetti, X., Cardin, S., Thalmann, D., & Vexo, F. (2007). Immersive flight for surveillance applications. IEEE Symposium on 3D User Interfaces, (3DUI'07), doi: 10.1109/3DUI.2007.340786. [ Links ]
2. Marine, P.M. & Rawashdeh, O.A. (2010). A First-Person View System for Remotely Operated Vehicles Using a Fisheye-Lens. AIAA Infotech at Aerospace, Atlanta, Georgia, doi: 10.2514/6.20103513. [ Links ]
3. Chitrakaran, V., Dawson, D., Kannan, H., & Feemster, M. (2006). Vision Assisted Autonomous Path Following for Unmanned Aerial Vehicles. 45th IEEE Conference on Decision and Control, pp. 63-68. [ Links ]
4. Neff, A., Lee, D., Chitrakaran, V., Dawson, D., & Burg, T. (2007). Velocity control for a quad-rotor uav fly-by-camera interface. IEEE Southeast Conf., pp. 273-278, doi: 10.1109/SECON.2007.342901. [ Links ]
5. Lee, D., Chitrakaran, V., Burg, T., Dawson, D., & Xian, B. (2007). Control of a remotely operated quadrotor aerial vehicle and camera unit using a fly-the-camera perspective. 46th IEEE Conference on Decision and Control, pp. 6412-6417, doi: 10.1109/CDC.2007.4434940. [ Links ]
6. Zul Azfar, A. & Hazry, D. (2011). Simple GUI design for monitoring of a remotely operated quadrotor unmanned aerial vehicle (UAV). 7th International IEEE Colloquium on Signal Proc. and its Applications (CSPA), pp. 23-27, doi: 10.1109/CSPA.2011.5759836. [ Links ]
7. Bouabdallah, S. & Siegwart, R. (2005). Backstepping and Sliding-mode Techniques Applied to an Indoor Micro Quadrotor. IEEE International Conference on Robotics and Automation (ICRA 2005), pp. 2247-2252, doi: 10.1109/ROBOT.2005.1570447. [ Links ]
8. Loukianov, A.G. (2002). Robust block decomposition sliding mode control design. Mathematical Problems in Engineering, Vol. 8, pp. 349-365, doi: 10.1080/10241230306732. [ Links ]
9. Luque-Vega, L., Castillo-Toledo, B., & Loukianov, A.G. (2012). Robust block second order sliding mode control for a quadrotor. Journal of the Franklin Institute (Advances in Guidance and Control of Aerospace Vehicles using Sliding Mode Control and Observation Techniques), Vol. 349, No. 2, pp. 719-739. [ Links ]
10. Luque-Vega, L.F. (2010). Design, Construction and Control of a Quadrotor Helicopter. Master thesis, CINVESTAV del IPN Unidad Guadalajara, Guadalajara, Jalisco, México. [ Links ]
11. Federal Aviation Administration (2008). Pilot's Handbook of Aeronautical Knowledge. Government Printing Office, United States. [ Links ]
12. Gopi S. (2005). Global Positioning System: Principles And Applications. McGraw-Hill Education, India. [ Links ]
13. Langley, R.B. (1999). Dilution of precision. GPS world, Vol. 10, pp. 52-59. [ Links ]