Texto completo disponible sólo en PDF.
Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
TIP. Revista especializada en ciencias químico-biológicas
versión impresa ISSN 1405-888X
TIP vol.8 no.1 Ciudad de México jun. 2005
Artículos de revisión
Las quinoproteínas alcohol deshidrogenasas en los sistemas bacterianos: distribución, clasificación, estructura y función
The alcohol quinoproteins dehydrogenases in the bacterial systems: distribution, classification, structure and function
1Depto. de Bioquímica, Instituto de Fisiología Celular, UNAM. Apdo. Postal 70-242, México, D.F.
2Instituto de Química, UNAM. Apdo. Postal 70-242, México, D.F.
Existe una gran diversidad de alcohol deshidrogenasas (ADHs) microbianas; las cuales son divididas en tres grandes grupos: (a) Las que son dependientes de las coenzimas NAD o NADP, (b) Las que son independientes de estas coenzimas; sin embargo, utilizan pirroloquinolina quinona (PQQ) y hemo tipo C como grupo prostético y (c) Las oxidasas dependientes de FAD que catalizan la reacción irreversible de alcoholes. Las ADHs que utilizan el PQQ, se encuentran a su vez divididas en tres tipos. Las ADHs tipo I que contienen sólo PQQ como grupo prostético y se les conoce como quinoproteínas; mientras que las ADHs tipo II y tipo III además del PQQ contienen hemo tipo C y se les conoce como quinohemoproteínas. Las ADHs tipo II son enzimas solubles que se encuentran en el espacio periplásmico y están presentes en proteobacterias como Pseudomonas putida, Ralstonia eutropha y Comamonas testosteroni. Las ADHs tipo Ill son enzimas que se encuentran ancladas a la membrana y trabajan orientadas hacia el espacio periplásmico. se les ha identificado y caracterizado únicamente en bacterias ácido acéticas. Las ADH tipo III, por lo general contienen tres subunidades. El transporte intramolecular de electrones en las ADHs tipo II y IIII se propone que es del PQQ al hemo C de la primera subunidad y de ahí, de hemo en hemo en la segunda subunidad hasta llegar a la quinona endógena. Los tres tipos de PQQ-ADHs son discutidas en esta revisión.
Palabras clave: Alcohol deshidrogenasas (ADHs); pirrolo-quinolina-quinona (PQQ); quinohemoproteína alcohol deshidrogenasa (qhADH); quinohemoproteína etanol deshidrogenasa (qhEDH); quinoproteína etanol deshidrogenasa (QEDH); quinoproteína metanol deshidrogenasa (QMDH)
Microbial alcohol oxidoreductases constitute a very diverse group. They can be divided into three major categories. (a) NAD(P)-dependent dehydrogenases. (b) NAD(P)-independent enzymes that use pirroloquinoline quinone (PQQ), heme C as cofactor. (c) FAD-dependent oxidases that catalyze an essentially irreversible oxidation of alcohols. The ADHs that have PQQ as the prosthetic group are divided into 3 groups; types I, II and III. Type I ADH is a simple quinoprotein having PQQ as the prosthetic group; while type II and type III ADHs are quinohemoprotein having heme C as well as PQQ. Type II are soluble periplasmic enzymes and are widely distributed in Proteobacterias such as Pseudomonas putida, Ralstonia eutropha and Comamonas testosteroni. Type III ADHs are membrane-bound enzymes and oriented towards the periplasmic surface. They have been identified and characterized solely in acetic acid bacteria. Type III ADH consists of three subunits. The intramolecular electron transfer in the type II and III ADHs is the PQQ to heme C of the first subunit and there, from heme to heme in the second subunit until arriving at ubiquinone. The three types of PQQ-ADHs are discussed in this paper.
Key Words: Alcohol dehydrogenases (ADHs); pyrroloquinoline-quinone (PQQ); quinohemeprotein alcohol dehydrogenase (qhADH); quinohemeprotein ethanol deshydrogenase (qhEDH); quinoprotein ethanol dehydrogenase (QEDH); quinoprotein methanol dehydrogenase (QMDH)
Referencias
1. Jornvall, H., Person, B. & Jeffery, J. Characteristics of alcohol/polyol dehydrogenases. Eur. J. Biochem. 167: 195-201 (1987). [ Links ]
2. Veenhuis, M., Douma, A., Harder, W. & Osumi, M. Degradation and turnover in the yeast Hansenula polymorpha induced by selective inactivation of peroxisomal enzymes. Arch. Microbiol. 134(3): 193-203 (1983). [ Links ]
3. Anthony, C. & Zatman, L.J. The microbial oxidation of methanol: The prostetic group of alcohol dehydrogenase of Pseudomonas. Biochem. J. 304: 665-674 (1967). [ Links ]
4. Duine, J.A. & Jongejan, J.A. Pyrroloquinoline quinone: a novel cofactor. Vitam Horm. 45:223-262 (1989). [ Links ]
5. Houck, D.R., Hanners, J.L. & Unkefer, C.J. Biosynthesis of pyrroloquinoline quinone. Identification of biosynthetic precursors using 13C and NMR spectroscopy. J. Am. Chem. Soc., 110: 6920-6921 (1988). [ Links ]
6. Houck, D.R., Hanners, J.L. & Unkefer, C.J. Biosynthesis of pyrroloquinoline quinone 2. Biosynthetic assembly from glutamate and tyrosine. J. Am. Chem. Soc., 113: 3162-3166 (1991). [ Links ]
7. Meulenberg, J.J., Sellink, E., Riegman, N.H. & Postma, P.Q. Nucleotide sequence and structure of the Klebsiella pneumoniae pqq operon. Mol. Gen. Genet, 232, 284-294 (1992). [ Links ]
8. Mutzel, A. & Gorisch, H. Quinoprotein ethanol dehydrogenase preparation of the apo-form and reconstitution with pyrroloquinoline quinone and Ca2+ o Sr2+ ions. Agric. Bil. Chem. 55, 1721-1726 (1991). [ Links ]
9. Itoh, S., Kawakani, H. & Fukuzumi, A. Modeling of the chemistry of quinoprotein methanol dehydogenase, oxidation of methanol by calcium complex of coenzyme PQQ via addition-elimination mechanism. J. Am. Chem. Soc. 119, 439-440 (1997). [ Links ]
10. Duine, J.A. Quinoproteins-enzyme containing the cofactor pyrroloquinoline quinone, topaquinone or tryptophan quinone. Eur. J. Biochem. 200, 271 284 (1991). [ Links ]
11. Harris, T.K. & Davidson, V.L. Replacement of enzyme-bound calcium with strontium alters the kinetic properties of methanol dehydrogenase. Biochem, J. 350, 917-923 (1994). [ Links ]
12. Anthony, C. Principle and applications for quinoproteins, Marcel Dekker, New York. pp 50-68 (1993). [ Links ]
13. Gorisch, H. & Rupp, M. Quinoprotein ethanol dehydrogenase from Pseudomonas. In: PQQ and quinoproteins (Jongejan, J.A. & Duine, J.A. eds.) pp 23-34. Kluwer Academic Publishers, Dordreeth (1989). [ Links ]
14. Toyama, H., et al. Three distinct quinoprotein alcohol dehydrogenase are expressed when Pseudomonas putida is grown on different alcohols. J. Bacteriol. 177, 2442-2450 (1995). [ Links ]
15. Vangnai, A.S. & Arp, D.J. An inducible 1-butanol dehydrogenase, a quinohaemoprotein, is involved in the oxidation of butane by "Pseudomonas butanovora ". Microbiology 147,745-756(2001). [ Links ]
16. Tachinaba, S., Kuba, N., Kawai, F., Duine, J. & Yasuda, M. Involvement of a quinoprotein (PQQ-containig) alcohol dehydrogenase in the degradation of polypropylene glycols by the bacterium Stenotrophomonas maltophilia. FEMS Microbiolog Letters. 128, 345-349 (2003). [ Links ]
17. Asakura, A. & Hoshino, T. Isolation and characterization of a new quinoprotein dehydrogenase, L-sorbose/L-sorbosone dehydrogenase. Biosci. Biotech Biochem. 62, 469-478 (1999). [ Links ]
18. Shibata, T., et al. Purification and characterization of a quinoprotein acohol dehydrogenase from Pseudogluconobacte saccharoketigenes IFO 14464. J. Biosic. Bioeng. 92, 524-531 (2001). [ Links ]
19. Sugisawa, T. & Hoshino, T. Purification and properties of membrane-bound D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3255. Biosci Biotechnol Biochem. 66(1), 57-64 (2002). [ Links ]
20. Yamanaka, K. & Tsuyuki, Y. Purification and characterization of membrane-bound glycerol dehydrogenase (GLDH) of Gluconobacter species. Agric. Biol. Chem. 47, 2173-2183 (1983). [ Links ]
21. De Jong, G.A.H., et al. Quinohemoprotein ethanol dehydrogenase from Comamonas testosteroni purification, characterization, and reconstitution of the apoenzyme with pyrroloquinoline quinone analogues. Eur. J. Biochem. 230, 899-905 (1995). [ Links ]
22. Shimao, M., Ninomiya, K., Kuno, O., Kato, N. & Sakazawa, C. Existence of a novel enzyme, pyrroloquinoline quinone-dependent polyvinyl alcohol dehydrogenase, in a bacterial symbiont, Pseudomonas sp. strain VM15C. Appl Environ Microbiol. 51(2), 268-275 (1986). [ Links ]
23. Zarnt, G., Schrader, T. & Andreesen, J.R. Catalytic and molecular properties of the quinohemoprotein tetrahydrofurfuryl alcohol dehydrogenase from Ralstonia eutropha strain Bo. J Bacteriol. 183(6),1954-1960 (2001). [ Links ]
24. Adachi, O., Miyagawa, E., Shinagawa, E., Matsushita, K. & Ameyana, M. Purification and characterization of particulate alcohol dehydrogenase from Acetobacter aceti. Agric. Biol. Chem. 42(12), 2331-2340 (1978). [ Links ]
25. Kondo, K., Beppu, T. & Horinuochi, S. Clonign, sequencing, and the characterization of the gene enconding the smallest subunit of the three componentmembrane bound alcohol dehydrogenase from Acetobacter pasteurians. J. Bacteriol. 177, 5048-5055 (1995) . [ Links ]
26. Tayama, H., Fukawa, M., Okumura, H., Kawamuri, Y. & Beppu, T. Purification and characterization ofmembrane-bound alcohol dehydogenase from Acetobacter polyoxogenes. Appl Microbiol. Biotechnol. 32, 181-185 (1989). [ Links ]
27. Matsushita, K., Takahashi, K., Takahashi, M., Ameyama, M. & Adachi, O. Methanol and ethanol oxidase respiratory chains of the methylotrophic acetic acid bacterium, Acetobacter methanolicus. J Biochem (Tokyo). 111(6), 739-747 (1992). [ Links ]
28. Matsushita, K., Yakushi, T., Toyama, H., Shinagawa, E. & Adachi, O. Function of multiple heme C moites in intramolecular electron transport and ubiquinone reduction in the quinohemoprotein alcohol dehydrogenase cytocrome c complex of Gluconobacter suboxydans. J.Biol. Chem. 271,4850-4857 (1996) . [ Links ]
29. Hopper, D.J. & Rogozinski, J. Redox potential of the haem group in the quinocytochrome, lupanine hydroxilase, an enzyme located in the periplasma of a Pseudomonas sp. Biochem Biophys Acta. 1383, 160-164 (1998). [ Links ]
30. Adachi, O., et al. Characterization of quinohemoprotein amine dehydrogenase from Pseudomonas putida. Biosci. Biotechnol. Biochem. 62, 469-478 (1998). [ Links ]
31. Takagi, K., Torimura, M., Kawaguchi, K., Kano, K. & Ikeda, T. Biochemical and electrochemical characterization of quinohemoprotein amine dehydrogenase from Paracoccus denitrificans. Biochemistry 38(21), 6935-6942 (1999). [ Links ]
32. Toyama, H., Mathews, F.S., Adachi, O. & Matsushita, K. Quinohemoprotein alcohol dehydrogenases: structure, function, and physiology. Arch Biochem Biophys. 428(1), 10-21 (2004). [ Links ]
33. Amaratunga, K., Goodwing, P.M., O'Connor, D.C. & Anthony, C. The methanol oxidation genes mxaFJGIR(S)ACKLD in Methylobacterium extorquenses. FEMS Microbiol. Lett. 146, 31-38 (1997). [ Links ]
34. Anthony, C. The bacterial oxidation of methane and methanol. Adv Microbial Physiol. 27, 113-210 (1986). [ Links ]
35. De Jong, G.A.H., et al. Characterization of the interaction between PQQ and heme C in the quinohaemoprotein ethanol dehydrogenase from Comamonas testosteroni. Biochesmistry 34, 9451-9458 (1995). [ Links ]
36. Kondo, K. & Horinouchi, S. Characterization of the genes encoding the three component membrane bound alcohol dehydogenase from Gluconobacter suboxydans and their expression in Acetobacterpasteurians. Appl. Environ. Micorbiol. 63, 1131-1138 (1997). [ Links ]
37. Inoue, T., et al. Cloning and sequencing of the gene enconding the 72-kilodalton dehydrogenase subunit of alcohol dehydrogenase from Acetobacter aceti. J. Bacteriol. 171, 3115-3122 (1989). [ Links ]
38. Inoue, T., et al. Nucleotide sequence of the gene encoding the 45-kilodalton subunit of alcohol dehydrogenase from Acetobacter aceti. J. Ferment. Bioeng. 73, 419-424 (1992). [ Links ]
39. Matsushita, K., Tataki, Y., Shinagawa, E., Ameyana, M. & Adachi, O. Ethanol oxidase respiratory chain of acetic acid bacteria-reactivity with ubiquinona of pyrroloquinoline quinone-dependt alcohol dehydrogenase purified from Acetobacter aceti and Gluconobacter suboxydans. Biosci. Biotechnol. Biochem. 56, 304-310 (1992). [ Links ]
40. Matsushita, K.,et al. Soluble andmembrane quinoprotein D-glucose dehydrogenase of Acinetobacter calcoaceticus: the binding process of PQQ to the apoenzymes. Biosci. Biotechnol. Biochem. 59, 1548-1555 (1995). [ Links ]
41. Ghosh, M., Anthony, C., Harlo, K., Goodwing, M.G. & Blake, C.C.F. The refined structure of the quinoprotein methanol dehydrogenase from Mehylobacterium extorquenses at 1.94 Ao. Structure 3, 177-187 (1995). [ Links ]
42. Keitel, T., et al. X-ray structure of the quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa: basis of substrate specificity. J Mol Biol. 297(4), 961-974 (2000). [ Links ]
43. Oubrie, A., Rozeboom, H., Halk., H. & Huizinga, G. Crystal structure of quinohemoprotein alcohol dehydrogenase from Comamonas testosteroni. The Journal of Biological Biochemistry 277, 3727-3732 (2002). [ Links ]
44. Xia, Z.X., et al. X-ray structure of methanol dehydrogenase from Paracoccus denitrificans and molecular modeling of its interactions with cytochrome c-551i. J Biol Inorg Chem. 8(8), 843-854 (2003). [ Links ]
45. Matsushita, K., Yamashita, T., Aoki, N., Toyama, H. & Adachi, O. Electron transfer from quinohemoprotein alcohol dehydrogenase to blue copper protein azurin in the alcohol oxidase respiratory chain of Pseudomonas putida HK5. Biochemistry 38, 6111-6118 (1999). [ Links ]
Recibido: 28 de Enero de 2005; Aprobado: 01 de Abril de 2005