SciELO - Scientific Electronic Library Online

 
vol.26Nematodos asociados al cultivo de pepino ( Cucumis sativus) y efecto de rhizobacterias promotoras de crecimiento sobre Meloidogyne incognita (Tylenchida: Heteroderidae)Relación entre el estado nutrimental y la densidad de Tetranychus urticae Koch en rosa de corte (Rosa hybrida) índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Biotecnia

versión On-line ISSN 1665-1456

Biotecnia vol.26  Hermosillo ene./dic. 2024  Epub 08-Nov-2024

https://doi.org/10.18633/biotecnia.v26.2183 

Artículos

Evidence of morphological variation in an isolated refuge population of the Sonoyta pupfish (Cyprinodon eremus) (Teleostei: Cyprinodontidae)

Evidencia de variación morfológica en una población de refugio aislada del cachorrito de Sonoyta (Cyprinodon eremus) (Teleostei: Cyprinodontidae)

Alexsandre Gutiérrez-Barragán1 
http://orcid.org/0000-0001-9688-5015

Carlos A. Ballesteros-Córdova2  * 
http://orcid.org/0000-0001-8922-9888

Alejandro Varela-Romero3  * 
http://orcid.org/0000-0003-1513-0580

Gorgonio Ruiz-Campos4 
http://orcid.org/0000-0003-1790-456X

José M. Grijalva-Chon3 
http://orcid.org/0000-0002-7215-918X

1Licenciatura en Biología. Universidad de Sonora. Hermosillo, Sonora, México.

2Departamento de Agricultura y Ganadería de la Universidad de Sonora (DAGUS), Hermosillo, Sonora, México.

3Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora (DICTUS). Hermosillo Sonora, México.

4Facultad de Ciencias, Universidad Autónoma de Baja California. Mexicali, Baja California, México.


Abstract

The Sonoyta pupfish (Cyprinodon eremus) is an endangered species endemic to the Sonoyta River basin, in northwestern México and southwestern United States. To assist the conservation efforts for this species in México, a refuge population was established in an artificial pond in 1988 at Centro Ecológico de Sonora in Hermosillo, Sonora by translocating individuals from the Sonoyta River population. We used multivariate morphometric methods to delineate body shape variations in the refuge population after 29 years of isolation, in comparison with wild individuals collected from the same sample. Significant variations were observed in body shape between refuge and wild populations. These variations are potentially attributable to different environmental conditions that influenced the refuge and wild populations.

Keywords: Conservation; recovery; morphological change; multivariate morphometrics

Resumen

El pez cachorrito de Sonoyta (Cyprinodon eremus) es una especie en peligro de extinción endémica de la cuenca del Río Sonoyta en el noroeste de México y el suroeste de Estados Unidos. Para ayudar en los esfuerzos de conservación de esta especie en México, se estableció una población de refugio en un estanque artificial en 1988 en el Centro Ecológico de Sonora en Hermosillo, Sonora mediante la translocación de individuos de la población del Río Sonoyta. Usamos métodos morfométricos multivariados para delinear las variaciones en la forma del cuerpo en la población del refugio después de 29 años de aislamiento en comparación con individuos silvestres recolectados de la misma muestra. Se observaron variaciones significativas en la forma del cuerpo entre las poblaciones del refugio y las silvestres. Estas variaciones son potencialmente atribuibles a diferentes condiciones ambientales que influyeron en las poblaciones silvestres y del refugio.

Palabras clave: Conservación; recuperación; cambio morfológico; morfometría multivariada

Introduction

The Sonoyta pupfish (Cyprinodon eremus) (Miller and Fuiman, 1987) is distributed in the Sonoyta River basin and the Quitobaquito Springs in northwestern México and the southwestern United States of America (USA) (Echelle et al., 2000; Miller et al., 2009; Minckley and Marsh, 2009). The Quitobaquito Springs population is stable, however, the Sonoyta River population is decreasing. These declines are the result of exotic fish introductions, drought, and groundwater pumping that dramatically affects native aquatic habitats (Miller and Fuiman, 1987; Miller et al., 2009; Minckley and Marsh, 2009). Currently, this trend of degradation and desiccation continues in the Sonoyta River promoted by the need for water for human growth (Miller et al., 2009; Minckley and Marsh, 2009; Minckley et al., 2013). The only perennial water flow in the river that persists, is about 1 km in length at the Agua Dulce or Papalote locality (USON 0222, Table 1), and is maintained during the dry season by underground flow of shallow waters (Minckley et al., 2013).

Table 1 Collecting sites for specimens from wild Cyprinodon eremus populations used in this study for morphometric and meristic analyses. USON = Universidad de Sonora, Hermosillo, M = Males, F = Females.  

Tabla 1 Sitios de recolección de especímenes de poblaciones silvestres de Cyprinodon eremus utilizados en este estudio para análisis morfométricos y merísticos. USON = Universidad de Sonora, Hermosillo, M = Machos, F = Hembras. 

Species Locality Catalog number Collection date (dd/mm/yy) Geographic coordinates Specimens analyzed
M F
C. eremus Sonora, Sonoyta River Basin, Ejido Josefa Ortíz de Domínguez, at Sonoyta-San Luis Río Colorado highway (km 11). USON-0148 01 09 1987 31°54’N 112°58’W 17 14
C. eremus Sonora, Río Sonoyta Basin, El Papalote, around 2 km southwest of Quitobaquito on the Sonoyta River, km 20 of the Sonoyta-San Luis Río Colorado highway. USON-0222 07 09 1987 31°56’N 113°02’W 10 13
C. eremus Sonora, Sonoyta River Basin, around 5 km south of the Sonoyta-San Luis Río Colorado highway (km 28). USON-0225 07 09 1987 31°55.980’N 113°1.980’W 3 3
C. eremus Sonora, Hermosillo city, Centro Ecológico de Sonora, in an artificial pond, USON-1386 10 11 2017 29°0.794’N 110°57.059’W 30 30

C. eremus is considered as endangered by the International Union for Conservation of Nature and the United States government (NatureServe et al., 2019). Strategies to manage Cyprinodon spp. include protecting their habitat and developing refuge populations to increase or re-establish wild populations in cases of extirpation (Minckley et al., 1991; Minckley, 1995; Koike et al., 2008). Refuges for C. eremus have been established in México to hamper the species’ gradual extinction (Minckley et al., 2013). These conservation efforts also echo an initiative that sought to recover native fish in the arid southwest during the 1960s (Minckley, 1995). In 1988, the first refuge population was created from the Sonoyta River populations in an artificial pond with only lentic habitat located at Centro Ecológico de Sonora (CES) in Hermosillo, Sonora (Marsh and Sada, 1993). Between 2007 and 2011, another five refuges were established: one in the Biological Station and another in Schuk Toak Visitor Center (translocated to the Biological Station refuge), both of them at El Pinacate y Gran Desierto de Altar Biosphere Reserve (RBEPGDA), one at Centro Intercultural de Estudios de Desiertos y Océanos (CEDO), one at Colegio de Bachilleres in Sonoyta (COBACH), and another at Quitovac that include fish stocked in the springs (Minckley et al., 2013). Currently, only the refuges at the RBEPGDA, COBACH, CEDO, and CES remain. The refuge in CES is the most populated (>1000 fish) for C. eremus in México. All the refuges were founded in México without an evaluation of their genetic variability.

Previously published papers on the pupfish family (Cyprinodontidae) have reported that populations with 15-30 years of isolation in distinct habitats develop morphological and genetic variations in the translocated populations (Collyer et al., 2005; Wilcox and Martin, 2006; Collyer et al., 2007; Koike et al., 2008; Lema, 2008; Collyer et al., 2011; Finger et al., 2013; Collyer et al., 2015; Black et al., 2017). These morphological changes may be attributed to phenotypic plasticity in response to alterations in the environmental conditions of the new habitats (Collyer et al., 2005; Wilcox and Martin, 2006; Collyer et al., 2007; Lema 2008; Collyer et al., 2015; Black et al., 2017), including evolutionary processes that occur on an ecological time scale (Collyer et al., 2007; Collyer et al., 2011). Translocating individuals to be used as reproductive stocks poses a risk for species management due to phenotypic differentiation (Collyer et al., 2005; Wilcox and Martin, 2006; Collyer et al., 2007; Lema, 2008; Collyer et al., 2011) and genetic adaptation to captivity (Frankham, 2008), potentially reducing the survivability of the captive population during reintroduction in a wild environment.

Considering that the Sonoyta pupfish population of the Sonoyta River has decreased drastically and the habitat historical water flow does not exist, the CES refuge population represents an opportunity for the recovery of the species. However, it has been isolated since 1988 in an artificial pond under distinct environmental conditions compared with the wild populations. In this regard, we performed multivariate morphometric analysis (Blackith and Reyment, 1971; Reyment, 1982) to characterize the morphological discrepancies between Sonoyta River wild C. eremus populations and CES refuge collected and founded from the same sample, respectively, with the goal of evidence the morphological variation after 29 years of isolation. The results obtained will help in redesigning, increasing the shelter area, and creating future management plans for species conservation.

Material and methods

Sample collection

Samples of the wild Cyprinodon eremus were collected from the Sonoyta River in 1987 using different seines. A subsample was fixed in 10 % formaldehyde and preserved in 50 % ethanol for final deposition in the native fish collection of the Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora (DICTUS). Another subsample from the wild fish collected in 1987 was kept alive and transported to CES facilities to establish the refuge population in 1988. All subsequent analyses herein were performed with the vouchers of the original collection and the offspring of the founding subsample.

We performed comparative morphometric analysis with 60 adult specimens (30 females and 30 males) of the wild C. eremus collected in 1987, as well as 60 adult specimens (30 females and 30 males) from the CES refuge population collected in 2017 using G-Minnow Traps (Table 1).

Morphometric analysis

Based on Hubbs and Lagler (2004) and the box-truss protocol (Strauss and Bookstein, 1982; Bookstein et al., 1985; Table 2; Figure 1), 35 morphological distances were measured considering that these characters underwent variation in both sexes of the genus Cyprinodon, as a result of the distinct habitats (Humphries et al., 1981; Collyer et al., 2005; 2015; Black et al., 2017). Seven meristic characters were also counted (Table 2) based on the description of C. eremus by Miller and Fuiman (1987). Females and males were separately analyzed due to the sexual dimorphism of cyprinodontids. Each specimen was examined with a digital caliper (precision 0.01 mm) connected to a personal computer.

Table 2 Morphological distances modified from Humphries et al. (1981), Miller and Fuiman (1987), Hubbs and Lagler (2004), Collyer et al. (2005), Collyer et al. (2015), Black et al. (2017), and additional measures based on the box truss protocol (Strauss and Bookstein, 1982; Bookstein et al., 1985) and quantified meristic characters for Cyprinodon eremus based on Miller and Fuiman (1987).  

Tabla 2 Distancias morfológicas modificadas de Humphries et al. (1981), Miller and Fuiman (1987), Hubbs and Lagler (2004), Collyer et al. (2005), Collyer et al. (2015), Black et al. (2017) y medidas adicionales basadas en el protocolo box truss (Strauss and Bookstein, 1982; Bookstein et al., 1985) y caracteres merísticos cuantificados para Cyprinodon eremus basados en Miller y Fuiman (1987)

Code Morphometric character
M1-3 Dorsal length of head
M1-23 Upper lip - Center of the eye
M1-17 Head length
M1-12 Preanal length
M1-14 Prepelvic length
M1-16 Ventral length of head
M1-4 Length of upper jaw
M2-23 Lower lip - Center of the eye
M2-10 Standard length
M3-5 Occiput - Dorsal fin origin
M3-14 Occiput - Pelvic fin origin
M3-16 Occiput - Isthmus
M5-7 Length of depressed dorsal fin
M5-6 Length of dorsal fin base
M5-11 Dorsal fin origin - Base of the last anal fin ray
M5-14 Body depth
M5-16 Dorsal fin origin - Isthmus
M6-8 Dorsal length of caudal peduncle
M6-9 Base of the last dorsal fin ray - Ventral base of the caudal fin
M6-11 Anterior depth of caudal peduncle
M6-14 Base of the last dorsal fin ray - Pelvic fin origin
M8-9 Depth of caudal peduncle
M8-11 Dorsal base of the caudal fin - Base of the last anal fin ray
M9-11 Ventral length of caudal peduncle
M11-14 Base of the last anal fin ray - Pelvic fin origin
M12-13 Length of depressed anal fin
M14-15 Length of pelvic fin
M14-16 Pelvic fin origin - Isthmus
M18-19 Length of pectoral fin
M18-20 Length of pectoral fin base
M21-22 Eye diameter
A1 Interorbital width
A2 Head width
A3 Width of gape
A4 Body width
No. Meristic character
1 Dorsal fin rays
2 Anal fin rays
3 Pectoral fin rays
4 Pelvic fin rays
5 Caudal fin rays
6 Scales from the dorsal fin origin to anal fin origin
7 Caudal peduncle scale count

Fig. 1 Landmarks for Box Truss protocol used in Cyprinodon eremus analysis. Black dots represent landmarks for distance measurements and the white dots represent the reference marks for the width measurements (Table 2 contains explanation of measurement codes).  

Fig. 1 Marcas para el protocolo Box Truss utilizado en el análisis de Cyprinodon eremus. Los puntos negros representan puntos de referencia para las medidas de distancia y los puntos blancos representan las marcas de referencia para las medidas de ancho (Tabla 2 contiene explicación de los códigos de medición). 

The regression described by Elliot et al. (1995) was performed to standardize the body measurements of each specimen. This regression model removes the component of size from the shape measurements (allometry), thereby homogenizing their variances (Jolicoeur, 1963). Each character was standardized using the equation Ms = Mo (Ls/Lt)b, where Ms = standardized measurement of the character; Mo = original measurement of the character (mm); Ls = average standard length (mm) of all the specimens from all the examined taxa; Lt = standard length (mm) of the specimen; and, “b” was estimated for each character from the observed data via the nonlinear regression equation M = aLb. The parameter “b” was estimated as the slope of the regression log Mo on log Lt, using data from all specimens. The parameter “a” is the non-standardized measurement of the character (mm) and L = Ls/Lt.

The standardized morphometric data and meristic values of all the specimens were used to perform discriminant function analysis (DFA) and principal component analysis (PCA), which are the most used analyzes in multivariate morphometrics (Humphries et al., 1981; Reyment, 1982; Turan, 1999). In the case of the PCA it does not require an a priori assignment of individuals into groups, but rather summarizes in linear combinations, called Principal Components, the variables that describe the shape variation in the combined sample (Humphries et al., 1981; Turan, 1999). On the DFA, the individuals are assigned a priori into groups to calculate the function that better discriminates between the groups (Humphries et al., 1981; Turan, 1999). The DFA was performed independently for females and males via a forward stepwise form using Statistica 5.0 software (StatSoft, Inc., Tulsa). It was performed to determine the combination of variables that optimally discriminated between wild and refuge populations. Statistically significant differences between populations were determined using Wilks’ lambda (λ), which oscillates from 0.0 (perfect discrimination power) to 1.0 (absence of discrimination). Values with p < 0.05 obtained in the DFA were considered statistically significant. The PCA was performed using the “factoextra” (Kassambara and Mundt, 2020) and “FactoMineR” (Lê et al., 2008) R packages (R Core Team, 2021) to determine which morphological variables best explained the variability in the dataset.

The most important morphological characters selected by DFA and PCA were illustrated by violin and box plots. A one-way analysis of variance with a 95 % confidence interval was performed for each character to evaluate the null hypothesis of equality between the populations. After the null hypothesis was rejected, a post-hoc Tukey test was performed on Statistica 5.0 software (StatSoft, Inc., Tulsa) to verify whether the groups significantly differed (Turan, 1999).

Results

DFA was performed on 120 specimens of C. eremus, females and males, from wild and refuge populations. 17 of the 41 morphological and meristic characters among females significantly distinguished the two populations (Table 3). The overall Wilks’ lambda (λ) was 0.06404 (p < 0.0001), indicating a high degree of discrimination between the two female populations. A significant difference was observed for eight variables (Table 3). According to PCA for wild and refuge females, principal components 1 and 2 combined explained 38.656% of the total variance, the PC1 and PC2 explained 25.329 % and 13.327 %, respectively (Supplementary Table 1).

Table 3 Discriminant function analysis summary and the standardized coefficients in the discriminant function for the two C. eremus females’ populations analyzed. Wilks’ lambda values, significance (p) and tolerance for 17 variables selected by forward stepwise discriminant function analysis. Wilks’ lambda: 0.06404 (p < 0.0001). Significant variables (p < 0.05) are indicated in bold.  

Tabla 3 Resumen del análisis de función discriminante y los coeficientes estandarizados en la función discriminante para las dos poblaciones de hembras de C. eremus analizadas. Valores lambda de Wilks, significancia (p) y tolerancia para 17 variables seleccionadas mediante análisis de función discriminante paso a paso hacia adelante. Lambda de Wilks: 0.06404 (p < 0.0001). Las variables significativas (p < 0.05) se indican en negrita. 

Character Wilks’ Lambda Partial Lambda F-remove (1,42) p-value Tolerance Coefficient
Body depth 0.0699 0.9161 3.8471 0.0565 0.6126 0.3825
Length of upper jaw 0.0878 0.7290 15.6142 0.0003 0.6940 -0.6459
Length of dorsal fin base 0.0816 0.7844 11.5455 0.0015 0.4781 0.6942
Occiput - Dorsal fin origin 0.0680 0.9420 2.5844 0.1154 0.6579 0.3068
Caudal fin rays 0.0857 0.7474 14.1921 0.0005 0.6103 0.6649
Length of pectoral fin base 0.0777 0.8245 8.9375 0.0047 0.5543 0.5815
Head width 0.0896 0.7145 16.7814 0.0002 0.5088 -0.7742
Occiput - Isthmus 0.0708 0.9051 4.4027 0.0419 0.4871 0.4562
Pectoral fin rays 0.0786 0.8144 9.5727 0.0035 0.5427 -0.6045
Pelvic fin rays 0.0668 0.9592 1.7884 0.1883 0.6991 0.2498
Scales from the dorsal fin origin to anal fin origin 0.0667 0.9595 1.7747 0.1900 0.8171 0.2302
Width of gape 0.0703 0.9107 4.1191 0.0488 0.6585 0.3807
Upper lip - Center of the eye 0.0687 0.9318 3.0719 0.0870 0.5238 -0.3729
Preanal length 0.0687 0.9324 3.0466 0.0882 0.5644 0.3578
Dorsal fin rays 0.0675 0.9489 2.2614 0.1401 0.6994 -0.2794
Head length 0.0673 0.9511 2.1603 0.1491 0.3735 0.3741
Dorsal length of head 0.0664 0.9650 1.5252 0.2237 0.3722 -0.3171

The scatterplot shows segregation between wild and refuge females, mostly along PC1 (Figure 2A). The variables that most contributed to PC1 were body depth, base of the last dorsal fin ray to pelvic fin origin, dorsal fin origin to base of the last anal fin ray, dorsal fin origin to isthmus, body width, anterior depth of caudal peduncle, depth of caudal peduncle, and occiput to pelvic fin origin, among others (Figure 2B; Supplementary Table 2). Of these, only body depth was selected by the DFA, and it was slightly non-significant (p = 0.0565, Table 3). In addition, the DFA selected the length of dorsal fin base, occiput to isthmus, length of pectoral fin base, length of the upper jaw, and width of gape to significantly (p < 0.05) discriminate between groups (Table 3); these variables also contributed to PC1 in the PCA (Figure 2B; Supplementary Table 2). Conversely, head width, caudal fin rays, and pectoral fin rays were significant (p < 0.05) in the discriminant function (Table 3) but contributed least to PC1 in the PCA (Supplementary Table 2).

Fig. 2 PCA for the two C. eremus females’ populations: (A) Scatterplots showing the position of the females along the first two PCs, the ellipses represent the 0.95 confidence intervals; (B) the correlation circle of the 15 variables that most contribute to these PCs (See supplementary table 2 for more information about the contribution of the variables).  

Fig. 2 ACP para las dos poblaciones de hembras de C. eremus: (A) Gráfico de dispersión mostrando la posición de las hembras en los dos primeros CPs, las elipses representan los intervalos de confianza de 0.95; (B) círculo de correlación de las 15 variables que más contribuyen a estos CPs (Ver tabla suplementaria 2 para más información acerca de la contribución de las variables). 

The DFA selected 25 morphological and meristic variables that best discriminated the two male populations (Table 4). As observed in females, a high degree of discrimination between both populations was observed based on the Wilks’ lambda (λ = 0.08582, p < 0.0001). Significant differences were observed in 13 variables (p < 0.05) (Table 4). The first two PCs in the PCA explained 31.87 % of the male variability, where PC1 explained 19.46 % and PC2 12.41% of the variance (Supplementary Table 3). The variables that contributed more to the PC1 were body depth, dorsal fin origin to the base of the last anal fin ray, occiput to isthmus, head length, depth of caudal peduncle, dorsal length of head, and occiput to pelvic fin origin (Figure 3B; Supplementary Table 4). However, the two C. eremus male populations were mostly differentiated along PC2 (Figure 3A), where the variables that most contributed to this PC were head width, the width of gape, lower lip to the center of the eye, base of the last dorsal fin ray to pelvic fin origin, base of the last anal fin ray to pelvic fin origin, eye diameter, length of upper jaw, preanal length, and anterior depth of caudal peduncle, among others (Figure 3B; Supplementary Table 4). Of these variables, the head width, base of the last dorsal fin ray to pelvic fin origin, lower lip to center of the eye, length of upper jaw and anterior depth of caudal peduncle were also significant (p < 0.05) in the DFA.

Table 4 Discriminant function analysis summary for males and the standardized coefficients in the discriminant function for the two C. eremus populations analyzed. Wilks’ lambda values, significance (p) and tolerance for 18 variables selected by forward stepwise discriminant function analysis. Wilks’ lambda: 0.08582 (p < 0.0001). Significant variables (p < 0.05) are indicated in bold.  

Tabla 4 Resumen del análisis de función discriminante para los machos y los coeficientes estandarizados en la función discriminante para las dos poblaciones de C. eremus analizadas. Valores lambda de Wilks, significancia (p) y tolerancia para 35 variables seleccionadas mediante análisis de función discriminante paso a paso hacia adelante. Lambda de Wilks: 0.08582 (p < 0.0001). Las variables significativas (p < 0.05) se indican en negrita. 

Character Wilks’ Lambda Partial Lambda F-remove (1,34) p-value Tolerance Coefficient
Anterior depth of caudal peduncle 0.0984 0.8725 4.9683 0.0325 0.2455 -0.7537
Head width 0.0984 0.8725 4.9670 0.0326 0.3131 0.6673
Length of depressed anal fin 0.1392 0.6166 21.1438 0.0001 0.2658 -1.2562
Scales from the dorsal fin origin - Anal fin origin 0.0995 0.8621 5.4390 0.0258 0.5077 0.5451
Occiput - Pelvic fin origin 0.0866 0.9906 0.3243 0.5728 0.2268 0.2135
Length of upper jaw 0.1038 0.8269 7.1179 0.0116 0.3876 0.6990
Base of the last dorsal fin ray - Ventral base of the caudal fin 0.1567 0.5476 28.0904 0.0000 0.1339 1.9228
Dorsal fin rays 0.1030 0.8330 6.8176 0.0133 0.2861 0.7991
Dorsal base of the caudal fin - Base of the last anal fin ray 0.0866 0.9911 0.3050 0.5844 0.2801 -0.1863
Ventral length of caudal peduncle 0.0902 0.9516 1.7302 0.1972 0.2896 -0.4277
Base of the last dorsal fin ray - Pelvic fin origin 0.1094 0.7847 9.3293 0.0044 0.1794 1.1457
Prepelvic length 0.0937 0.9158 3.1244 0.0861 0.3318 0.5268
Dorsal fin origin - Isthmus 0.0908 0.9447 1.9893 0.1675 0.3914 -0.3930
Lower lip - Center of the eye 0.0976 0.8791 4.6758 0.0377 0.1683 -0.8864
Caudal peduncle scale count 0.0928 0.9250 2.7582 0.1060 0.4560 -0.4243
Body depth 0.1119 0.7666 10.3489 0.0028 0.0616 -2.0361
Ventral length of head 0.1171 0.7331 12.3770 0.0013 0.1500 1.3949
Length of depressed dorsal fin 0.1004 0.8551 5.7592 0.0220 0.1594 -0.9971
Dorsal length of caudal peduncle 0.0904 0.9495 1.8066 0.1878 0.3103 -0.4217
Pectoral fin rays 0.0892 0.9616 1.3575 0.2521 0.5318 0.2810
Head length 0.0969 0.8855 4.3955 0.0435 0.1488 0.9174
Width of gape 0.0940 0.9128 3.2480 0.0804 0.1939 -0.7014
Base of the last anal fin ray - Pelvic fin origin 0.0889 0.9649 1.2364 0.2740 0.4171 -0.3033
Pelvic fin origin - Isthmus 0.0903 0.9507 1.7642 0.1929 0.3970 0.3687
Caudal fin rays 0.0892 0.9624 1.3279 0.2572 0.5229 -0.2804

Fig. 3 PCA for the two C. eremus males’ populations: (A) Scatterplots showing the position of the males along the first two PCs, the ellipses represent the 0.95 confidence intervals; (B) the correlation circle of the 15 variables that most contribute to these PCs (See supplementary table 4 for more information about the contribution of the variables).  

Fig 3 ACP para las dos poblaciones de machos de C. eremus: (A) Gráfico de dispersión mostrando la posición de los machos en los dos primeros CPs, las elipses representan los intervalos de confianza de 0.95; (B) círculo de correlación de las 15 variables que más contribuyen a estos CPs (Ver tabla suplementaria 4 para más información acerca de la contribución de las variables). 

Other key variables in both the DFA (p < 0.05) and PC2 of the PCA were ventral length of head, head length, length of depressed dorsal fin and length of depressed anal fin (Table 4; Supplementary Table 4). However, the body depth, base of the last dorsal fin ray to ventral base of the caudal fin, scales from the dorsal fin origin to anal fin origin, and dorsal fin rays were important in the DFA (p < 0.05) (Table 4) but contributed less to PC2 of the PCA (Supplementary Table 4).

Finally, the most significant morphometric variables in the DFA that contributed most to the PCA in both female and male populations, were plotted using violin and box plots (Figure 4). There were 19 divergent morphometric characters between wild and refuge C. eremus populations. Both sexes of the refuge population exhibited a greater length of the upper jaw but a shorter body width, length of the depressed dorsal fin, dorsal fin origin to the base of the last anal fin ray, anterior depth of the caudal peduncle, dorsal fin origin to the isthmus, and base of the last dorsal fin ray to pelvic fin origin compared with the wild population (Figure 4A-G ).

Fig 4 Violin and box plots of the most notable morphological characters for differentiating wild and refuge populations of Cyprinodon eremus. The letters above the bars represent the significant differences among groups according to the Tukey test (p < 0.05), and the Y-axis values are in millimeters.  

Fig 4 Gráficos de violín y diagramas de cajas de los caracteres morfológicos más destacados para diferenciar poblaciones silvestres y de refugio de Cyprinodon eremus. Las letras sobre las barras representan las diferencias significativas entre grupos de acuerdo con la prueba de Tukey (p < 0.05) y los valores en el eje Y están dados en milímetros. 

The females of the refuge population had a reduced width of gape, lower lengths from the occiput to pelvic fin origin and from the occiput to the isthmus, lower depths of body and caudal peduncle, and shorter length of the dorsal and pectoral fin bases compared with those of the wild C. eremus population (Figure 4H-N, respectively). Conversely, the males of the refuge population showed greater widths of the gape (Figure 4H H) and of the head, higher ventral length of head, and preanal length, but a shorter length from the base of the last anal fin ray to pelvic fin origin and shorter length of depressed anal fin compared with those of the wild C. eremus population (Figure 4O-S).

Discussion

The present study showed evidence of morphological variations in the refuge population of C. eremus, after 29 years of isolation in an artificial pond with a homogeneous environment distinct from its wild habitat. Upon comparing the CES refuge population with the wild population originally collected in a natural stream habitat from the Sonoyta River during the establishment of the refuge, we detected morphotypes associated with habitat type. Changes were observed in the mouth, head, body, and caudal peduncle regions. The refuge population had a longer upper jaw and varied width of gape. McGee et al. (2013) suggested that jaw traits affect feeding kinematics in fishes. Changes in head orientation and upward repositioning have been detected in Devil’s Hole pupfish Cyprinodon diabolis (Wilcox and Martin, 2006) and Cyprinodon bovinus (Black et al., 2017), which may be related to foraging behavior (Black et al., 2017). Furthermore, changes in body depth and width were observed in the refuge C. eremus population. Similar variations observed in Cyprinodon pecosensis have been related to the size of their intestine due to the different types of food available in their habitat (Collyer et al., 2015). The distributions and types of food available in the water column likely differ between the wild and refuge habitats of C. eremus. Ultimately, these variables may contribute to morphological changes observed in the wild and refuge populations.

The refuge C. eremus males had wider heads. Previously, C. pecosensis found in lentic sinkhole populations exhibited longer heads, which was attributed to a larger gill size adapted to prevent hypoxia in a low dissolved oxygen environment (Collyer et al., 2015). Here, the C. eremus refuge population inhabits an artificial pond with limited water circulation and the presence of algae. These factors may contribute to a wider head, that allows more gill space, thereby reducing the risk of hypoxia when the dissolved oxygen levels in the refuge pond decrease.

Modifications in the pectoral fin attachment have been associated with enhanced maneuverability in the water column (Black et al., 2017). Moreover, the reduction in the length of the pectoral fin base in C. eremus refuge females, depressed dorsal fin in refuge individuals, depressed anal fin in refuge males, and base of the dorsal fin in refuge females may be associated with a lower requirement for stability in the artificial pond, an environment without running water. Also, the anterior depth of the caudal peduncle was lower in both females and males from the refuge population; in the refuge females, the length from the base of the last dorsal fin ray to pelvic fin origin, was shorter, and the depth of the caudal peduncle was lower accounting for slender caudal regions. Variations in the caudal region of Cyprinodon have been associated with water flow and the presence of predators (Tobler and Carson, 2010; Collyer et al., 2015). Thus, individuals from the refuge population, especially females, had slender caudal regions, potentially because they did not need to swim against the watercourse or move between habitats in the lentic pond environment.

Although morphological differences were observed between the wild and refuge C. eremus males, more disparities were observed between females between these populations. In C. diabolis, wild males have been shown to be more aggressive than two populations stocked in two artificial ponds in defending their respective territories (Wilcox and Martin, 2006). Similarly, C. eremus males fight each other to protect their territory and reproduce with receptive females (Cox, 1966). Unlike in C. diabolis males, within the mechanisms operating in wild C. eremus males for intimidating opponents and courting females, the male body shape plays an essential role, which is retained in the refuge males. Refuge males that maintained a body shape similar to wild males likely exhibited better fitness if the selective pressures of the environment were not strong enough to determine survival. Similar results were found in Cyprinodon tularosa, wherein males showed a positive association between body depth and size, likely related to the territorial defense, and females showed a decreased association between body depth and size (Collyer et al., 2005). Therefore, the morphological variations in C. eremus females were more pronounced than in males, because morphological character selection in females may be regulated by environmental conditions and not by sexual selection.

Rodríguez-Ramírez et al. (2023) recently studied the genetic variability of the CES and other two refuge populations and wild C. eremus from the Sonoyta River using seven microsatellite loci. The CES population showed less genetic variability compared to the others. This lower genetic variation in CES refuge is more related to the time of isolation in contrast to the others analyzed (Rodríguez-Ramírez et al., 2023). As mentioned by Koike et al. (2008) and Finger et al. (2013), typical long established pupfish refuge populations showed low diversity and significant divergence in allele frequencies.

Notably, lower genetic variability may reduce the survivability of the CES refuge C. eremus population and its ability to reproduce in its native environmental, as observed for other Cyprinodon spp. (Wilcox and Martin, 2006; Collyer et al., 2011). This could hinder attempts to re-establish or increase native pupfish populations in the Sonoyta River, as has been the case for other Cyprinodontidae species (Hendrickson and Brooks, 1991; Black et al., 2017). Therefore, it is necessary to evaluate the phenotypic and genetic diversities of the remaining wild populations and the rest of the refuges, including CES, to detect isolation-induced morphological and genetic variations. Consequently, a management plan is necessary for the conservation of C. eremus, considering the information on morphology and genetic variation. Measures must be taken to avoid morphological changes by increasing the heterogeneity of artificial habitats conditions rendering them more similar to wild habitats conditions (Black et al., 2017). Wild individuals should also be translocated to the refuge population to increase genetic variability and therefore reduce the decline in fitness (Wilcox and Martin, 2006; Araki et al., 2007; Frankham, 2008; Black et al., 2017; Rodríguez-Ramírez et al., 2023). We recommend an extensive survey to obtain samples from all localities and habitat types of the entire C. eremus distribution to account for the phenotypic variability in each habitat.

Acknowledgments

We thank Centro Ecológico de Sonora for specimens donation to conduct the analysis. To the Colección de Peces Nativos del Laboratorio de Vertebrados e Invertebrados of DICTUS for providing specimens of wild populations of the Sonoyta pupfish. CONAPESCA issuing the Permiso de Pesca de Fomento PPF/DGOPA-023/18 for the collection of specimens. We thanks to the two anonymous referees and the Associated Editor of the Journal for the comments and editions to improve the manuscript.

References

Araki, H., Cooper, B., and Blouin, M.S. 2007. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science: 318, 100-103, DOI: 10.1126/science.1145621. [ Links ]

Black, A., Seears, H., Hollenbeck, C., and Samollow, P. 2017. Rapid genetic and morphologic divergence between captive and wild populations of the endangered Leon Springs pupfish, Cyprinodon bovinus. Molecular Ecology: 26, 2237-2256, DOI: 10.1111/mec.14028. [ Links ]

Blackith, R.E., and Reyment, R.A. 1971. Multivariate morphometrics. Academic Press, London. [ Links ]

Bookstein, F.L., Chernoff, B., Elder, R.L., Humphries, J.L., Smith, G.R., and Strauss, R.F. 1985. Morphometrics in evolutionary biology: the geometry of size and shape change, with examples from fishes. The Academy of Natural Sciences of Philadelphia, Ann Arbor. [ Links ]

Collyer, M.L., Hall, M.E., Smith, M.D., and Hoagstrom, C.W. 2015. Habitat-morphotype associations of Pecos Pupfish (Cyprinodon pecosensis) in isolated habitat complexes. Copeia. 103; 181-199, DOI: 10.1643/OT-14-084. [ Links ]

Collyer, M.L., Heilveil, J.S., and Stockwell, C.A. 2011. Contemporary evolutionary divergence for a protected species following assisted colonization. PLoS One 6(8), e22310, DOI: 10.1371/journal.pone.0022310 [ Links ]

Collyer, M.L, Novak, J.M., and Stockwell, C.A. 2005. Morphological divergence of native and recently established populations of White Sands Pupfish (Cyprinodon tularosa). Copeia. 2005: 1-11, DOI: 10.1643/CG-03-303R1. [ Links ]

Collyer, M.L., Stockwell, C.A., Adams, D.C., and Reiser, M.H. 2007. Phenotypic plasticity and contemporary evolution in introduced populations: evidence from translocated populations of white sands pupfish (Cyprinodon tularosa). Ecological Research. 22: 902-910, DOI: 10.1007/s11284-007-0385-9. [ Links ]

Cox, T.J. 1966. A behavioral and ecological study of the desert pupfish (Cyprinodon macularius) in Quitobaquito Springs, Organ Pipe Cactus National Monument, Arizona. PhD thesis, University of Arizona. [ Links ]

Echelle, A.A., Van Den Bussche, R.A., Malloy, Jr T.P., Haynie, M.L., and Minckley, C.O. 2000. Mitochondrial DNA variation in pupfishes assigned to the species Cyprinodon macularius (Atherinomorpha: Cyprinodontidae): taxonomic implications and conservation genetics. Copeia. 2000: 353-364, DOI: 10.1643/0045-8511(2000)000[0353:MDVIPA]2.0.CO;2. [ Links ]

Elliott, N.G., Haskard, K., and Koslow, J.A. 1995. Morphometric analysis of orange roughy (Hoplostethus atlanticus) of the continental slope of southern Australia. Journal of Fish Biology. 46: 202-220, DOI: 10.1111/j.1095-8649.1995.tb05962.x. [ Links ]

Finger, A.J., Parmenter, S., and May, B.P. 2013. Conservation of the Owens pupfish: genetic effects of multiple translocations and extirpations. Transactions of the American Fisheries Society. 142: 1430-1443, DOI: 10.1080/00028487.2013.811097. [ Links ]

Frankham, R. 2008. Genetic adaptation to captivity in species conservation programs. Molecular Ecology 17: 325-333, DOI: 10.1111/j.1365-294X.2007.03399.x [ Links ]

Hendrickson, D.A., and Brooks, J.E. 1991. Transplanting short-lived fishes in North American deserts: review, assessment, and recommendations. In: Battle against extinction: native fish management in the American West. W.L. Minckley, J.E. Deacon (eds.), pp 283-298. The University of Arizona Press, Tucson. [ Links ]

Hubbs, C.L., and Lagler, K.F. 2004. Fishes of the Great Lakes region. Revised Edition by Smith GR. University of Michigan Press, Ann Arbor. [ Links ]

Humphries, J.M., Bookstein, F.L., Chernoff, B., Smith, G.R., Elder, R.L., and Poss, S.G. 1981. Multivariate discrimination by shape in relation to size. Systematic Zoology. 30: 291-308, DOI: 10.1093/sysbio/30.3.291. [ Links ]

Jolicoeur, P. 1963. 193. Note: Multivariate generalization of the allometry equation. Biometrics. 19: 497-499, DOI: 10.2307/2527939. [ Links ]

Kassambara, A., and Mundt, F. 2020. Factoextra: Extract and visualize the results of multivariate data analyses. R Package Version 1.0.7. https://CRAN.R-project.org/package=factoextra [Accessed on 20 VIII 23]. [ Links ]

Koike, H., Echelle, A.A., Loftis, D., and Van Den Bussche, R.A. 2008. Microsatellite DNA analysis of success in conserving genetic diversity after 33 years of refuge management for the desert pupfish complex. Animal Conservation. 11: 321-329, DOI: 10.1111/j.1469-1795.2008.00187.x. [ Links ]

Lê, S., Josse, J., and Husson, F. 2008. FactoMineR: an R package for multivariate analysis. Journal of statistical software. 25: 1-18, DOI: 10.18637/jss.v025.i01. [ Links ]

Lema, S.C. 2008. The phenotypic plasticity of Death Valley’s pupfish: Desert fish are revealing how the environment alters development to modify body shape and behavior. American Scientist. 96: 28-36, http://www.jstor.org/stable/27859085. [ Links ]

Marsh, P.C., and Sada, D.W.1993. Desert Pupfish recovery plan. U.S. Fish and Wildlife Service, Phoenix. [ Links ]

McGee, M.D., Schluter, D., and Wainwright, P.C. 2013. Functional basis of ecological divergence in sympatric stickleback. BMC Evolutionary Biology. 13: 277, DOI: 10.1186/1471-2148-13-277. [ Links ]

Miller, R.R., and Fuiman, L.A. 1987. Description and conservation status of Cyprinodon macularius eremus, a new subspecies of pupfish from Organ Pipe Cactus National Monument, Arizona. Copeia. 1987(3): 593-609, DOI: 10.2307/1445652. [ Links ]

Miller, R.R., Minckley, W.L., and Norris, S.M. 2009. Peces dulceacuícolas de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México. [ Links ]

Minckley, C., Pompa, I.I., Duncan, D., Timmons, R., Caldwell, D., Méndez, J.L., and Rosen, P. 2013. Native aquatic vertebrates: Conservation and management in the Río Sonoyta basin, Sonora, Mexico. In: Merging science and management in a rapidly changing world: Biodiversity and management of the Madrean Archipelago III: 67. G.J. Gottfried, P.F. Folliott, B.S. Gebow, L.G. Eskew, L.C. Collins (eds.), U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Proceedings RMRS. Fort Collins, CO: U.S. P. [ Links ]

Minckley, W.L. 1995. Translocation as a tool for conserving imperiled fishes: Experiences in western United States. Biological Conservation. 72: 297-309, DOI: 10.1016/0006-3207(94)00091-4 [ Links ]

Minckley, W.L., and Marsh, P.C. 2009. Inland fishes of the grater Southwest: chronicle of a vanishing biota. University of Arizona Press, Tucson. [ Links ]

Minckley, W.L., Meffe, G.K., and Soltz, D.L. 1991. Conservation and management of short-lived fishes: the Cyprinodontoids. In: Battle against extinction: native fish management in the American West. W.L. Minckley, J.E. Deacon (eds.), pp 247-282. The University of Arizona Press, Tucson . [ Links ]

NatureServe, Hendrickson D, and Valdes Gonzales A, 2019. Cyprinodon eremus. In: The IUCN Red List of Threatened Species 2019: e.T191303A82960949. https://dx.doi.org/10.2305/IUCN.UK.2019-2.RLTS.T191303A82960949.en. [Accessed on 11 II 22]. [ Links ]

R Core Team, 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. [ Links ]

Reyment, R.A. 1982. Multivariate morphometrics. In: Handbook of Statistics 2: Classification Pattern Recognition and Reduction of Dimensionality. P.R. Krishnaiah, L.N. Kanal (ed.), pp 721-745. Elsevier, North Holland, Amsterdam. [ Links ]

Rodríguez-Ramírez, R., Echelle, A.A., Varela-Romero, A., Grijalva-Chon, J.M., Pacheco-Hoyos, N., and Torres-López, M.A. 2023. Genetic evaluation of the refuge program for Sonoyta pupfish (Cyprinodontidae: Cyprinodon eremus) in Mexico. Journal of ichthyology. 63: 6, 1149-1156 DOI: 10.1134/S0032945223060140. [ Links ]

Strauss, R.E., and Bookstein, F.L. 1982. The truss: body form reconstructions in morphometrics. Systematics Zoology 31, 113-135, DOI: 10.1093/sysbio/31.2.113. [ Links ]

Tobler, M., and Carson, E.W. 2010. Environmental variation, hybridization, and phenotypic diversification in Cuatro Ciénegas pupfishes. Journal of Evolutionary Biology. 23: 1475-1489, DOI: 10.1111/j.1420-9101.2010.02014.x. [ Links ]

Turan, C. 1999. A note on the examination of morphometric differentiation among fish populations: The Truss System. Turkish Journal of Zoology 23:259-263. [ Links ]

Wilcox, J.L., and Martin, A.P. 2006. The devil’s in the details: genetic and phenotypic divergence between artificial and native populations of the endangered pupfish (Cyprinodon diabolis). Animal Conservation 9, 316-321, DOI: 10.1111/j.1469-1795.2006.00039.x. [ Links ]

Supplementary information

Supplementary table 1 Principal Components Analysis summary for C. eremus females. All the Principal Components are shown, their eigenvalues, percentage of variance and cumulative percentage of variance.  

Tabla suplementaria 1 Resumen del Análisis de Componentes Principales para las hembras C. eremus. Se muestran todos los Componentes Principales, sus autovalores, porcentaje de varianza y porcentaje de varianza acumulada. 

Principal Component Eigenvalue Percentage of variance Cumulative percentage of variance
Principal Component 1 10.385 25.330 25.330
Principal Component 2 5.464 13.327 38.657
Principal Component 3 3.291 8.026 46.683
Principal Component 4 2.856 6.965 53.648
Principal Component 5 1.841 4.489 58.138
Principal Component 6 1.734 4.228 62.366
Principal Component 7 1.526 3.722 66.087
Principal Component 8 1.372 3.346 69.433
Principal Component 9 1.206 2.942 72.374
Principal Component 10 1.058 2.581 74.955
Principal Component 11 1.016 2.478 77.433
Principal Component 12 0.939 2.290 79.723
Principal Component 13 0.864 2.107 81.830
Principal Component 14 0.782 1.907 83.738
Principal Component 15 0.696 1.698 85.436
Principal Component 16 0.649 1.583 87.019
Principal Component 17 0.597 1.455 88.474
Principal Component 18 0.522 1.273 89.747
Principal Component 19 0.489 1.193 90.940
Principal Component 20 0.463 1.130 92.070
Principal Component 21 0.395 0.962 93.032
Principal Component 22 0.381 0.929 93.961
Principal Component 23 0.287 0.699 94.660
Principal Component 24 0.272 0.663 95.323
Principal Component 25 0.261 0.636 95.960
Principal Component 26 0.234 0.570 96.530
Principal Component 27 0.229 0.559 97.089
Principal Component 28 0.185 0.452 97.541
Principal Component 29 0.171 0.417 97.958
Principal Component 30 0.159 0.388 98.346
Principal Component 31 0.124 0.303 98.649
Principal Component 32 0.118 0.287 98.936
Principal Component 33 0.096 0.235 99.171
Principal Component 34 0.065 0.160 99.330
Principal Component 35 0.064 0.156 99.486
Principal Component 36 0.060 0.146 99.632
Principal Component 37 0.049 0.118 99.750
Principal Component 38 0.038 0.093 99.843
Principal Component 39 0.036 0.087 99.930
Principal Component 40 0.020 0.048 99.978
Principal Component 41 0.009 0.022 100

Supplementary table 2 Contribution of each variable to the first five Principal Components in the PCA for C. eremus females.  

Tabla suplementaria 2 Contribución de cada variable a los primeros cinco Componentes Principales en el ACP para las hembras de C. eremus

Character PC1 PC2 PC3 PC4 PC5
Dorsal length of head 0.0087 1.2287 14.5306 1.0073 1.2437
Upper lip - Center of the eye 0.1905 1.4202 7.4826 2.2152 0.2027
Head length 0.0000 3.0259 9.8181 5.5030 0.0445
Preanal length 1.3449 5.9523 1.1118 4.2622 3.1700
Prepelvic length 4.4698 4.8511 0.3855 2.9661 0.3140
Ventral length of head 0.3864 1.9233 5.4001 0.7780 6.4097
Length of upper jaw 3.2733 1.3930 1.1742 4.4196 0.1827
Lower lip - Center of the eye 0.1568 2.2097 7.1520 1.1069 0.1734
Occiput - Dorsal fin origin 1.9476 1.6739 0.1469 1.0430 7.8714
Occiput - Pelvic fin origin 5.4459 0.4527 0.8304 3.7536 0.0443
Occiput - Isthmus 4.1115 4.2722 0.6140 0.8561 0.2164
Length of depressed dorsal fin 1.8243 3.8582 0.0020 3.1207 1.1533
Length of dorsal fin base 4.4878 1.6547 0.0172 7.1377 0.1156
Dorsal fin origin - Base of the last anal fin ray 6.3516 2.6368 1.3475 0.0135 0.0032
Body depth 8.0888 0.1881 1.0052 0.0186 0.2613
Dorsal fin origin - Isthmus 6.1461 0.2131 0.0133 0.4343 1.4010
Dorsal length of caudal peduncle 2.2670 2.7064 5.6126 3.5229 0.1246
Base of the last dorsal fin ray - Ventral base of the caudal fin 0.0352 7.8507 3.5532 4.1896 0.0161
Anterior depth of caudal peduncle 5.9668 2.2485 2.1717 0.3784 0.2205
Base of the last dorsal fin ray - Pelvic fin origin 7.4653 0.1589 0.9335 0.0839 0.5642
Depth of caudal peduncle 5.8106 4.1835 0.0066 0.3976 0.0002
Dorsal base of the caudal fin - Base of the last anal fin ray 0.0042 8.2923 4.3005 3.5591 6.2474
Ventral length of caudal peduncle 3.8866 2.9026 1.0788 1.6713 7.6280
Base of the last anal fin ray - Pelvic fin origin 0.6382 0.0129 1.3122 3.5401 6.3243
Length of depressed anal fin 0.2042 8.2842 0.0189 2.9811 0.9898
Length of pelvic fin 0.3302 6.0794 3.8599 0.0000 6.1808
Pelvic fin origin - Isthmus 3.5141 4.3903 0.0218 2.9247 1.4048
Length of pectoral fin 0.5195 3.7250 6.8255 1.7178 0.2353
Length of pectoral fin base 3.9349 0.2714 0.3357 0.0246 0.4428
Eye diameter 0.4816 0.2607 11.9743 1.1347 0.3070
Interorbital width 2.2774 0.0023 0.1211 4.0871 13.6219
Head width 0.1755 4.6747 0.8143 2.1701 9.5027
Width of gape 2.4212 2.8997 1.0667 0.9393 1.4473
Body width 6.0851 0.2059 1.0624 1.0207 1.7812
Scales from the dorsal fin origin to anal fin origin 1.4424 0.9295 0.0357 0.0619 4.3412
Caudal peduncle scale count 2.4048 0.5725 0.1872 1.1563 1.4176
Dorsal fin rays 0.1960 0.0024 0.0153 1.0788 2.0977
Anal fin rays 0.0279 0.1543 1.8445 8.9752 3.5809
Pectoral fin rays 0.2641 0.1019 0.5696 0.1164 7.0393
Pelvic fin rays 0.0000 1.6501 0.1131 15.3607 1.6023
Caudal fin rays 1.4133 0.4861 1.1336 0.2718 0.0747

Supplementary table 3 Principal Components Analysis summary for C. eremus males. All the Principal Components are showed, their eigenvalues, percentage of variance and cumulative percentage of variance.  

Tabla suplementaria 3 Resumen del Análisis de Componentes Principales para los machos C. eremus. Se muestran todos los Componentes Principales, sus autovalores, porcentaje de varianza y porcentaje de varianza acumulada. 

Principal Component Eigenvalue Percentage of variance Cumulative percentage of variance
Principal Component 1 7.978 19.459 19.459
Principal Component 2 5.088 12.410 31.869
Principal Component 3 3.962 9.664 41.533
Principal Component 4 3.301 8.052 49.585
Principal Component 5 2.518 6.143 55.727
Principal Component 6 1.933 4.715 60.442
Principal Component 7 1.692 4.126 64.568
Principal Component 8 1.530 3.731 68.299
Principal Component 9 1.319 3.217 71.516
Principal Component 10 1.153 2.813 74.329
Principal Component 11 1.077 2.626 76.955
Principal Component 12 0.917 2.237 79.192
Principal Component 13 0.894 2.180 81.372
Principal Component 14 0.859 2.095 83.467
Principal Component 15 0.781 1.905 85.372
Principal Component 16 0.669 1.632 87.004
Principal Component 17 0.605 1.475 88.479
Principal Component 18 0.590 1.438 89.917
Principal Component 19 0.484 1.181 91.099
Principal Component 20 0.391 0.953 92.052
Principal Component 21 0.379 0.924 92.976
Principal Component 22 0.344 0.839 93.815
Principal Component 23 0.331 0.808 94.623
Principal Component 24 0.323 0.788 95.411
Principal Component 25 0.297 0.724 96.135
Principal Component 26 0.214 0.521 96.656
Principal Component 27 0.199 0.484 97.141
Principal Component 28 0.183 0.446 97.587
Principal Component 29 0.157 0.384 97.971
Principal Component 30 0.141 0.345 98.316
Principal Component 31 0.122 0.298 98.614
Principal Component 32 0.108 0.263 98.877
Principal Component 33 0.097 0.236 99.112
Principal Component 34 0.091 0.223 99.335
Principal Component 35 0.063 0.153 99.488
Principal Component 36 0.057 0.139 99.627
Principal Component 37 0.050 0.122 99.749
Principal Component 38 0.037 0.091 99.840
Principal Component 39 0.034 0.084 99.924
Principal Component 40 0.019 0.047 99.971
Principal Component 41 0.012 0.029 100.000

Supplementary table 4 Contribution of each variable to the first five Principal Components in the PCA for C. eremus males.  

Tabla suplementaria 4 Contribución de cada variable a los primeros cinco Componentes Principales en el ACP para los machos de C. eremus

Character PC1 PC2 PC3 PC4 PC5
Dorsal length of head 4.550 3.994 0.419 0.369 0.136
Upper lip - Center of the eye 3.640 2.253 3.467 0.409 6.651
Head length 7.320 2.256 0.004 0.839 2.324
Preanal length 0.339 5.731 2.444 1.653 2.815
Prepelvic length 1.285 2.565 0.397 12.677 1.286
Ventral length of head 3.888 2.449 7.679 0.010 1.710
Length of upper jaw 0.992 5.866 0.144 1.104 1.357
Lower lip - Center of the eye 1.576 6.645 3.489 0.008 4.003
Occiput - Dorsal fin origin 0.043 4.049 0.570 5.510 0.029
Occiput - Pelvic fin origin 4.543 0.071 0.479 6.344 0.160
Occiput - Isthmus 8.123 1.351 0.447 0.093 0.615
Length of depressed dorsal fin 3.509 1.499 1.899 7.500 0.603
Length of dorsal fin base 2.686 0.513 11.391 0.012 1.666
Dorsal fin origin - Base of the last anal fin ray 8.795 2.188 0.628 0.109 0.084
Body depth 9.148 0.957 0.101 1.725 0.962
Dorsal fin origin - Isthmus 3.550 4.139 0.619 4.408 1.801
Dorsal length of caudal peduncle 0.254 0.025 7.065 0.398 13.844
Base of the last dorsal fin ray - Ventral base of the caudal fin 0.682 0.514 10.589 0.744 7.103
Anterior depth of caudal peduncle 4.088 4.443 3.351 0.013 1.016
Base of the last dorsal fin ray - Pelvic fin origin 3.154 6.517 0.465 0.025 0.274
Depth of caudal peduncle 6.409 0.493 0.131 1.145 1.786
Dorsal base of the caudal fin - Base of the last anal fin ray 0.895 0.304 5.803 0.009 9.178
Ventral length of caudal peduncle 0.693 1.406 1.530 0.967 11.585
Base of the last anal fin ray - Pelvic fin origin 0.075 6.373 0.003 1.427 1.126
Length of depressed anal fin 2.366 1.460 0.172 11.487 0.267
Length of pelvic fin 0.454 0.000 4.214 11.650 0.048
Pelvic fin origin - Isthmus 0.015 0.575 4.870 1.695 10.753
Length of pectoral fin 2.876 0.411 1.992 4.929 1.281
Length of pectoral fin base 2.314 0.281 0.416 1.601 1.042
Eye diameter 0.865 5.936 0.709 0.056 0.228
Interorbital width 2.837 0.003 4.184 5.746 3.576
Head width 1.229 7.844 2.066 0.134 1.024
Width of gape 1.802 7.223 3.227 0.461 0.542
Body width 2.753 3.108 0.527 4.127 0.003
Scales from the dorsal fin origin to anal fin origin 1.154 0.254 0.817 0.048 3.709
Caudal peduncle scale count 0.113 2.257 0.650 4.431 0.153
Dorsal fin rays 0.005 0.006 7.409 1.595 0.369
Anal fin rays 0.311 0.059 4.440 0.012 0.213
Pectoral fin rays 0.439 0.001 0.627 0.183 0.888
Pelvic fin rays 0.116 0.029 0.566 0.155 3.761
Caudal fin rays 0.111 3.951 0.001 4.194 0.025

Received: October 20, 2023; Accepted: February 19, 2023; Published: March 04, 2020

*Authors for correspondence: Carlos A. Ballesteros-Córdova, Alejandro Varela Romero. e-mail: carlos.ballesteros@unison.mx, alejandro.varela@unison.mx

The authors declare that they have no conflict of interest.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License