Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de ingeniería química
versión impresa ISSN 1665-2738
Rev. Mex. Ing. Quím vol.7 no.2 Ciudad de México ago. 2008
Optimización y síntesis de procesos
Análisis y reconfiguración óptima de líneas de efluentes a una unidad de tratamiento multicontaminante
Analysis and optimal retrofit of effluent lines entering a multicontaminant treatment unit
R. HernándezSuárez1*, J.M. ZamoraMata2, F. MurrietaGuevara1 y R. LugoLeyte2
1 Programa de Investigación y Desarrollo Tecnológico de Procesos y Reactores, Instituto Mexicano del Petróleo, Cd. de México, 07730 México. * Autor para la correspondencia. Email: rhsuarez@imp.mx. Tel: (55) 91758206, Fax: (55) 9175 8429
2 Departamento de Ingeniería de Procesos e Hidráulica. Universidad Autónoma MetropolitanaIztapalapa, Cd. de México, 09340 México.
Recibido 8 de Octubre 2007
Aceptado 6 de Junio 2008
Resumen
Este trabajo trata sobre el problema de optimización de sistemas multicontaminantes de efluentes industriales que contienen una unidad de tratamiento. Los altos costos que representan la construcción de nuevas plantas de tratamiento de efluentes cuando se deben cumplir restricciones normativas más severas en las industrias, hace obligatorio la búsqueda de alternativas que sean atractivas para el reuso de los sistemas existentes. Se propone un procedimiento que enfatiza la reevaluación y reconfiguración de instalaciones de tratamiento de contaminantes existentes, que tiene como base la solución sucesiva de un modelo de programación no lineal (PNL). En el método de programación matemática que se propone, se desarrolla un modelo matemático de programación no lineal y no convexo, que exhibe la presencia de bilinealidades que frecuentemente causan problemas de convergencia a soluciones óptimas globales. Para evitar tales dificultades, en el procedimiento de solución y análisis del problema que se presenta se introduce un modelo de programación lineal, donde se obtienen los menores costos de tratamiento, para ajustarse a tales cambios más estrictos en las regulaciones ambientales. Un problema ilustrativo es presentado para demostrar el método y conducir un análisis sistemático de la región factible de diseño.
Palabras clave: diseño de sistemas de tratamiento multicontaminante de efluentes, análisis y reconfiguración de líneas de efluentes, optimización no convexa, regulaciones ambientales, región factible de diseño.
Abstract
The investment costs involved in the construction of a new treatment system, and the fact that standards for the discharge of contaminants to the environment may vary during the life of an industrial plant, foster the development of methodologies for the analysis, and development of cost effective retrofit designs for wastewater treatment systems. This paper presents an efficient methodology for the analysis and retrofit of multicontaminant wastewater treatment systems which involve a single treatment unit. The developed methodology is based on a non linear programming model that captures the topological and operational features of a treatment superstructure, which contains all possible layouts for the treatment system, and incorporates a recycle stream that strengthens the system's contaminant removal capabilities. The developed nonconvex mathematical model is accompanied by a non deterministic, but very reliable solution strategy that conducts a systematical exploration of the search space, in the pursuit for global optimal solutions. A case study that includes both, the analysis, and the retrofit of an existing wastewater treatment system, under current and foreseeable contaminant concentration limits, is utilized to illustrate the proposed methodology.
Keywords: design of wastewater treatment system, analysis and retrofit design, nonconvex optimization, network superstructure, environmental regulations.
DESCARGAR ARTÍCULO EN FORMATO PDF
Referencias
AlvaArgáez, A., Kokossis, A., Smith, R. (1998). Wastewater Minimization of Industrial. Systems Using an Integrated Approach. Computers and Chemical Engineering 22, S741744. [ Links ]
AlRedhwan, S.A., Crittenden, B. D., Labadidi, H. M. S. (2005). Wastewater Minimization under Uncertain Operational Conditions. Computers and Chemical Engineering 29, 10091021. [ Links ]
Androulakis, I. P., Maranas, C.D., Floudas, C. A. (1995). αBB:A Global Optimization. Method of General Constrained Nonconvex Problems. Journal of Global Optimization 7, 337363. [ Links ]
Bahy, M. N., ElHalwagi, M. M. (2000). Pollution Prevention Targets through Integrated Design and Operation. Computers and Chemical Engineering 24, 14451453. [ Links ]
Brooke, A., Kendrick, D., Meeraus, A., Raman, R. (1998). GAMS: A User's. Guide, release 2.50. GAMS Development Corporation. [ Links ]
Castro, P., Fernandes, M. C., Nunes P. C. (1999). Improvements for Mass Exchange Networks Design. Chemical Engineering Science 54, 16491665. [ Links ]
Chang, C. T., Li, B. H. (2006). Optimal Design of Wastewater Equalization Systems in Batch Processes. Computers and Chemical Engineering 30, 797806. [ Links ]
Dhole, V. R., Ramchandani, N., Tainsh, R. A. Wasilewski, M. (1996). Make Your Process Water Pay for Itself. Chemical Engineering 103, 100103. [ Links ]
Doyle, S. J., Smith, R. (1997). Targeting Water Reuse with Multiple Contaminants. Chemical Engineering Research and Design: Transactions of the Institution of Chemical Engineers B. 75, 181189. [ Links ]
Feng, X., Seider W. D. (2001). New Structure and Design Methodology for Water Networks. Industrial and Engineering Chemistry Research 40, 61406146. [ Links ]
Galan, B., Grossmann, I. E. (1998). Optimal Design of Distributed Wastewater Treatment Networks. Industrial and Engineering Chemistry Research 37, 40364048. [ Links ]
Hallale, N., Fraser, D. M. (1998). Capital Cost Targets for Mass Exchange Networks. A Special Case: Water Minimization. Chemical Engineering Science 53, 293313. [ Links ]
HernándezSuárez R, CastellanosFernández J., Zamora J.M. (2004). Superstructure Decomposition and Parametric Optimization Approach for the Synthesis of Distributed Wastewater Treatment Networks. Industrial and Engineering Chemistry Research 43, 21752191. [ Links ]
Huang, Ch., Chang, Ch., Ling, H. (1999). A Mathematical Programming Model for Water Usage and Treatment Network Design. Industrial and Engineering Chemistry Research 38, 26662679. [ Links ]
Li, B. H., Chang, C. T. (2006). A Mathematical Programming Model for Discontinuous WaterReuse System Design. Industrial and Engineering Chemistry Research 45, 50275036. [ Links ]
Kuo, W. C. J., Smith, R. (1997). Effluent Treatment System Design. Chemical Engineering Science 52, 42734290. [ Links ]
Lee, S., Grossmann, I. E. Global. (2003). Optimization of Nonlinear Generalized Disjunctive Programming with Bilinear Equality Constraints: Applications to Process Networks. Computers and Chemical Engineering 27, 15571575. [ Links ]
Novak P. Z., Kravanja Z. (2006). Selection of the Economic Objective Function for the Optimization of Process Flow Sheets. Industrial and Engineering Chemistry Research 45, 42224232. [ Links ]
OECD, Organization for Economic Cooperation and Development. Codes of Corporate Conduct(1999). An Expanded Review of Their Contents, TD/TC/. [ Links ]
OECD, Organization for Economic Cooperation and Development. The OECD Guidelines for Multinational Enterprises (2000) Revision. OECD, Paris. Presentation at the OECD Business and Industry Policy Forum on Environmental Management: Challenges for Industry. [ Links ]
Olesen, S. G., Polley, G. T. (1996). Dealing with Plant Geography and Piping Constraints in Water Network Design. Process Safety and Environment Protection 74. 273276. [ Links ]
Olesen, S. G., Polley, G. T. (1997). A Simple Methodology for the Design of Water Networks Handling Single Contaminants. Chemical Engineering Research and Design: Transactions of the Institution of Chemical Engineers A. 75, 420426. [ Links ]
Polley, G. T., Polley, H. L. Design Better Water Networks. (2000). Chemical Engineering Progress 96, 4752. [ Links ]
Quesada, I., Grossmann, I. E. (1995). Global Optimization of Bilinear Process Networks with Multicomponent Flows. Computers and Chemical Engineering 12, 12191242. [ Links ]
Ryoo, H. S., Sahinidis, N.V. (1996). A BranchandReduced Approach to Global Optimization. Journal of Global Optimization 8, 107138. [ Links ]
Sharatt, P. (1999). Environmental Criteria Design. Computers and Chemical Engineering 23, 14691475. [ Links ]
Sorin, M., Bédard, S. (1999). The Global Pinch Point in Water Reuse Networks. Chemical Engineering Research and Design: Transactions of the Institution of Chemical Engineers B. 77, 305308. [ Links ]
Takama, N., Kuriyama, T., Shiroko, K., Umeda, T. (1980). Optimal Water Allocation in a Petroleum Refinery. Computers and Chemical Engineering 4, 251258. [ Links ]
Tsai, M., Chang, Ch. (2001). Water Usage and Treatment Network Design Using Genetic Algorithms. Industrial and Engineering Chemistry Research 40, 48744888. [ Links ]
Wang, Y. P., Smith, R. (1994a). Wastewater Minimization. Chemical Engineering Science 49, 9811000. [ Links ]
Wang, Y. P., Smith, R. (1994b). Design of Distributed Effluent Treatment Systems. Chemical Engineering Science 49, 31273145. [ Links ]
Wang, Y. P., Smith, R. (1995). Wastewater Minimization with Flowrate Constraints. Chemical Engineering Research and Design: Transactions of the Institution of Chemical Engineers A 73, 889904. [ Links ]
Wang, B. Feng, X. Zhang, Z. (2003). A Design Methodology for MultipleContaminant Water Networks with Single Internal Water Main. Computers and Chemical Engineering 27, 903911. [ Links ]
Young, D. M., Cabezas, H. (1999). Designing Sustainable Processes with Simulation: Waste Reduction (WAR) Algorithm. Computers and Chemical Engineering 23, 14771491. [ Links ]
Zamora, J. M., Grossmann, I. E. (1998). Continuous Global Optimization of Structured Process System Models. Computers and Chemical Engineering 22, 17491790. [ Links ]
Zamora, J. M., Grossmann, I. E. (1999). A Branch and Contract Algorithm for Problems with Concave Univariate, Bilinear and Linear Fractional Terms. Journal of Global Optimization 14, 217219. [ Links ]
Zamora, J. M., Castellanos, J., Hernández, R. (1999). Targeting and Design of Distributed Wastewater Treatment Systems through Linear Programming. Presented at the AIChE Annual Meeting, Dallas, TX. [ Links ]
ZamoraMata, J. M., HernándezSuárez R., CastellanosFernández J. (2004). Modelo de Programación Lineal para Asistir en el Diseño de Sistemas Distribuidos de Tratamiento de Efluentes. Revista Mexicana de Ingeniería Química 3, 121134. [ Links ]