SciELO - Scientific Electronic Library Online

 
vol.7 número3Efecto de la calidad del agua y tamaño de partícula en la producción de quitosano a partir de β-quitina extraída de desperdicios de calamar gigante (Dosidicus gigas) índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.7 no.3 Ciudad de México dic. 2008

 

Simulación y control

 

Mejora en el control en cascada para reactores tubulares

 

Improved cascade control scheme for tubular reactors

 

E. Hernández–Martínez , R. Urrea y J. Alvarez–Ramirez

 

Universidad Autónoma Metropolitana—Iztapalapa, Apartado postal 55–534, lztapalapa, DF., 09340 México

 

Recibido 26 de Junio 2008
Aceptado 28 de Octubre 2008

 

Resumen

Los reactores tubulares son difíciles de operar debido al acoplamiento intrínsico entre los procesos de transporte, cinética no lineal y su naturaleza distribuida. Debido a las numerosas aplicaciones industriales de los reactores tubulares, el problema de monitoreo y control efectivo es de gran importancia económica y de seguridad. En este trabajo introducimos una nueva configuración del esquema de control en cascada basada en el promedio de la medición de tres temperaturas distribuidas a lo largo de la posición axial del reactor tubular (wav). La configuración del control explota la información provista por dos sensores de temperatura adicionales localizados cerca de la alimentación y salida del reactor. La configuración con (wav) mejora el comportamiento del esquema clásico de control en cascada frente a perturbaciones e incertidumbre de los parámetros del modelo. Mediante simulaciones numéricas se ilustra y compara el desempeño del control propuesto.

Palabras clave: control en cascada, temperatura promedio, reactor tubular.

 

Abstract

Tubular reactors are difficult to operate due the intricate coupling between transport processes, nonlinear chemical kinetics, and their distributed nature. However, due to numerous industrial applications for chemical tubular reactors, the problem of monitoring and controlling them effectively is of great safety and economical importance. In this work, we introduce a new cascade control scheme based on three–temperature measurement distributed along the axial position of the tubular reactor with respect to a weighted average temperature (wav). The control configuration exploits the information provided by two additional temperatures sensor located at the feed and the output of the tubular reactor. The configuration with wav improves the behavior of the control scheme by enhancing the disturbance and parameter's uncertainty. Numerical simulations are used to illustrate and compare the control performance.

Keywords: cascade control, average temperature, tubular reactor.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Referencias

Alvarez–Ramirez J., Suarez R., and Morales A. (2000). Cascade control for a class uncertain nonlinear systems: A backstepping design approach. Chemical Engineering Science 55, 1695–1712        [ Links ]

Christofides, P. D. (2001). Nonlinear and robust control of PDE systems: Methods and applications to transport–reaction processes. Boston: BirkhXauser.         [ Links ]

Froment, G. and Bischoff, K.B. (1990). Chemical Reactor Analysis and Design, 2nd Ed., John Wiley and Sons, Inc.         [ Links ]

Hoo K., Zheng D., (2002). Low order control relevant models for a class of distributed parameters systems. Chemical Engineering Science 56, 6683–6710.         [ Links ]

Hua X., Jutan A., (2000). Nonlinear inferential Cascade control of Exothermic Fed–Bed Reactors. AIChE J. 46 (5) 980–996.         [ Links ]

Morari M. and Zifiriou E. (1989). Robust Process Control. Prentice Hall, New York.         [ Links ]

Lefervre, L., Dochain, D., Feyo de Azevedo, S., Magnus A. (2000). Optimal selection of orthogonal polynomials applied to the integration of chemical reactor equations by collocation methods. Computers and Chemical Engineering 24, 2571–2588        [ Links ]

Li M., Christofides D. (2007). An input/output approach to the optimal transition control of a class of distributed chemical reactors. Chemical Engineering Science 62, 2979-2988.         [ Links ]

Pearson J.R.A. (1959). A note on the "Danckwerts" boundary conditions for continuous flow reactors. Chemical Engineering Science 10, 281–284.         [ Links ]

Pellegrine L., Possio C.T., Albertoni S., Biardi G. (1993). Different scenarios in a controlled tubular reactor with a counter current coolant. Chaos Solutions and Fractals 3(5), 537–549.         [ Links ]

Urrea R., Alvarez J., Alvarez–Ramirez J. (2008), Linear PI temperature–composition cascade control for tubular reactor. Chemical Engineering Communications 195, 7 803–820        [ Links ]

Varma A., Aris R. (1977) Stirred pots and empty tubes. In L. Lapidus & Admunson N. R. Chemical Reactor Theory (pp. 79–154), Prentice Hall        [ Links ]

Wu W., Huang M. (2003). Nonlinear inferential control for an exothermic packed–bed reactor: Geometric approaches. Chemical Engineering Science 58, 2023–2034.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons