SciELO - Scientific Electronic Library Online

 
vol.8 número2Biodegradación de [bmim][PF6] utilizando Fusarium spInterrelación entre las características estructurales y las propiedades de rehidratación de microcápsulas de salsa de chile manzano obtenidas mediante secado por aspersión índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.8 no.2 Ciudad de México ago. 2009

 

Fenómenos de transporte

 

Estudio numérico de la convección natural en una cavidad cuadrada en 2–D con interfase fluido–medio poroso y generación de calor

 

Numerical study of natural convection in a 2–D square cavity with fluid–porous medium interface and heat generation

 

H. Jiménez–Islas1*, M. Calderón–Ramírez1, J.L. Navarrete–Bolaños1, J.E. Botello–Álvarez 1, G.M. Martínez–González1 y F. López–Isunza2

 

1 Departamento de Ingeniería Química–Bioquímica. Instituto Tecnológico de Celaya. Ave. Tecnológico y A. García Cubas s/n. Celaya, Gto. CP 38010. * Autor para la correspondencia. E–mail: hugo@itc.mx Tel. +52 (461) 611–75–75

2 Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana. C.P. 09340 Iztapalapa, México D.F., México

 

Recibido 19 de Noviembre 2008
Aceptado 8 de Julio 2009

 

Resumen

Se estudió numéricamente el fenómeno de convección natural bidimensional en una cavidad cuadrada que contiene dos regiones horizontales formadas por un fluido homogéneo y un medio poroso isótropo, el cual presenta generación de calor. Para la modelación, se utilizó el enfoque de dominio simple con un parámetro binario para que las ecuaciones de momentum y de energía tengan validez en todo el dominio. Las ecuaciones de transporte se discretizaron mediante colocación ortogonal y el sistema de ecuaciones algebraicas que se genera se resuelve con el método de Newton. Las simulaciones se hicieron para números de Rayleigh entre 103 y 106; para valores de la fuente de calor (S0) de 0, 10, 30 y 50; para números de Darcy de 10–4, 10–6 y 10–8 y para posiciones de la interfase medio poroso–fluido entre 0 < Yp < 1, considerando el número de Prandtl igual a 0.71, analizando su efecto sobre las líneas de flujo, isotermas y el número de Nusselt. Además, se comparó este método con resultados publicados previamente, obteniendo buena concordancia. Los resultados indican que el enfoque de dominio simple es una buena aproximación para predecir el flujo entre las dos fases, sin la necesidad de especificar condiciones interfaciales.

Palabras clave: interfase fluido–medio poroso, colocación ortogonal, enfoque de un solo dominio.

 

Abstract

A numerical study was performed regarding two–dimensional natural convection in a square cavity that contains two horizontal regions formed by a homogeneous fluid and an isotropic heat–generating porous medium. The one–domain formulation was used for developing the mathematical model, with a binary parameter so as to the momentum and energy equations were valid throughout the domain. The governing equations were discretized using orthogonal collocation and the set of algebraic equations generated is solved via Newton method. The simulations were performed for Rayleigh numbers among 103 and 106; for values of the dimensionless heat source (S0) of 0, 10, 30, and 50; Darcy numbers of 10–4, 10–6, and 10–8 and for positions of the porous medium–fluid interface between 0< Yp < 1, considering the Prandtl number equals to 0.71, to assess their effect on the streamlines, isotherms and Nusselt number. In addition, this method was compared with previously published reports with good agreement. The results indicate that the one–domain formulation is a good approximation for predicting the flow between the two phases without the requirement to specify interfacial conditions.

Keywords: fluid–porous medium interface, orthogonal collocation, one–domain approach.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Agradecimientos

Los autores agradecen el apoyo financiero del Consejo Nacional de Ciencia y Tecnología (CONACYT) mediante el Proyecto SEP–2004–CO1–46230.

 

Referencias

Alazmi, B. y Vafai, K. (2001). Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. International Journal of Heat and Mass Transfer 46 (44), 1735–1749.         [ Links ]

Basu, A. J. y Khalili, A. (1999). Computation of flow through a fluid–sediment interface in a benthic chamber. Physics of Fluids 11 (6), 1395–1405.         [ Links ]

Beavers, G.S. y Joseph, D.D. (1967). Boundary conditions at a naturally permeable wall. Journal of Fluid Mechanics 30, 197–207.         [ Links ]

Beckermann, C., Ramadhyani, S. y Viskanta, R. (1987). Natural convection flow and heat transfer between a fluid layer and a porous layer inside a rectangular enclosure. Journal of Heat Transfer 109, 363–371.         [ Links ]

Bird, R. B., Stewart, W. E. y Lightfoot, E. N. (2002). Transport Phenomena. 2nd Edition, John Wiley & Sons Inc. USA.         [ Links ]

Brinkman, H.C. (1947). On the permeability of media consisting of closely packed porous particles. Applied Science and Research A1, 81–86.         [ Links ]

Carbonell, R. G. y Whitaker, S. (1984). Heat and mass transport in porous media. In Mechanics of Fluid in Porous Media. J. Bear and Corapcioglu, M. Y. Eds. Martinus Nijhoff, Brussels, 121–198.         [ Links ]

Chandesris, M. y Jamet, D. (2006). Boundary conditions at a planar fluid–porous interface for a Poiseuille flow. International Journal of Heat and Mass Transfer 49 (13–14) 2137-2150.         [ Links ]

Das, S. y Sahoo R.K. (1999). Effect of Darcy, fluid Rayleigh and heat Generation parameters on Natural Convection in a Porous Square Enclosure: A Brinkman–Extended Darcy model. International Communications in Heat and Mass Transfer 26, 569–578.         [ Links ]

Deng, C. y Martinez, D. M. (2005). Viscous flow in a channel partially filled with a porous medium and with wall suction. Chemical Engineering Science 60(2), 329–336.         [ Links ]

Finlayson, B. A. (1980). Nonlinear Analysis in Chemical Engineering. McGraw–Hill Book Co. USA. 366 p.         [ Links ]

Kim, G.B. y Hyun, J. M. (2004). Buoyant convection of a power–law fluid in an enclosure filled with heat–generating porous media. Numerical Heat Transfer A. 45(6), 569–582.         [ Links ]

Gobin, D., Goyeau, B. y Songbe, J. P. (1998). Double diffusive natural convection in a composite fluid–porous layer. Journal of Heat Transfer 120(1), 234–242.         [ Links ]

Gobin, D., Goyeau, B. y Neculae, A. (2005). Convective heat and solute transfer in partially porous cavities. International Journal of Heat and Mass Transfer 48, (10), 1898–1908.         [ Links ]

Gobin, D. y Goyeau, B. (2008). Natural convection in partially porous media: A brief overview. International Journal of Numerical Methods for Heat & Fluid Flow 18(3–4), 465–490.         [ Links ]

Goyeau, B., Lhuillier, D., Gobin, D. y Velarde, M. G. (2003). Momentum transport at a fluid–porous interface. International Journal of Heat and Mass Transfer 46(21), 4071–4081.         [ Links ]

Hirata, S. C., Goyeau, B., Gobin, D. y Cotta, R. M. (2006). Stability of natural convection in superposed fluid and porous layers using integral transforms. Numerical Heat Transfer Part B–Fundamentals 50(5), 409–424         [ Links ]

Hirata, S.C., Goyeau, B. y Gobin, D. (2007a). Stability of natural convection in superposed fluid and porous layers: Influence of the interfacial jump boundary condition. Physics of Fluids 19, (5), 058.         [ Links ]

Hirata, S.C., Goyeau, B., Gobin, D., Carr M. y Cotta R.M. (2007b). Lineal stability of natural convection in superposed fluid and porous layers: Influence of the interfacial modeling. International Journal of Heat and Mass Transfer 50, 1356–1367.         [ Links ]

Hirata, S.C., Goyeau, B., Gobin, D., Chandesris M. y Jamet D. (2009). Stability of natural convection in superposed fluid and porous layers: Equivalence of the one– and two–domain approaches. International Journal of Heat and Mass Transfer 52, 533–536.         [ Links ]

Jiménez–Islas, H. (1999). Modelamiento Matemático de la Transferencia de Momentum, Calor y Masa en Medios Porosos. Tesis Doctoral. UAM, México D.F.         [ Links ]

Jiménez–Islas, H., Navarrete–Bolaños, J.L. y Botello–Alvarez, E. (2004). Estudio numérico de la convección natural de calor y masa 2–D en granos almacenados en silos cilíndricos / numerical study of the natural convection of heat and 2–D mass of grain stored in cylindrical silos. Agrociencia 38, 325–342.         [ Links ]

Jiménez–Islas, H. y López–Isunza F. (1996). PARCOL2: Programa para resolver sistemas de ecuaciones diferenciales parciales parabólicas no lineales, por doble colocación ortogonal. Avances en Ingeniería Química 6 (2), 168–173.         [ Links ]

Jiménez–Islas, H., López–Isunza, F. y Ochoa–Tapia, J. A. (1999). Natural convection in a cylindrical porous cavity with internal heat source: a numerical study with Brinkman–extended Darcy model. International Journal of Heat and Mass Transfer 42, 4185–4195.         [ Links ]

Jiménez–Islas, H., Magaña–Ramírez, J. L. y Torregrosa–Mira A. (1996). Efecto del calor de respiración sobre la convección natural en el almacenamiento de granos en silos. Memorias VI Congreso Nacional de la Asociación Mexicana de Ingeniería Agrícola, México.         [ Links ]

Jue, T.C. (2003). Analysis of thermal convection in a fluid–saturated porous cavity with internal heat generation. Heat and Mass Transfer 40, 83–89.         [ Links ]

Ochoa–Tapia, J.A. y Whitaker, S. (1995). Momentum–transfer at the boundary between a porous–medium and a homogeneous fluid .1. Theoretical development. International Journal of Heat and Mass Transfer 38, 2635-2646.         [ Links ]

Ochoa–Tapia, J. A. y Whitaker, S. (1997). Heat transfer at the boundary between a porous medium and a homogeneous fluid. International Journal of Heat and Mass Transfer 40, 2691–2707.         [ Links ]

Neale, G. y W. Nader, W. (1974). Practical significance of Brinkman's extension of Darcy's Law. Canadian Journal of Chemical Engineering 52, 475–478.         [ Links ]

Nield, D.A. y Bejan, A. (1999). Convection In Porous Media. 2nd Edition. Springer–Verlag, USA.         [ Links ]

Prasad, V. y Chui, A. (1989). Thermal convection in a cylindrical porous enclosure with internal heat generation. Journal of Heat Transfer 111, 916–925.         [ Links ]

Roache, P. J. (1972). Computational Fluid Dynamics. Hermosa Publishers. Albuquerque, N. M. USA.         [ Links ]

Saito, T. y Hirose, K. (1989). High–accuracy benchmark solutions to natural convection in a square cavity. Computational Mechanics 4, 417–427.         [ Links ]

Singh, A.K., Leonardi, E. y Thorpe, G.R. (1993). Three–Dimensional natural convection in a confined fluid overlying a porous layer. Journal of Heat Transfer 115, 631–638.         [ Links ]

Thorpe, G.R., Ochoa–Tapia, A. y Whitaker, S. (1991).The Diffusion of Moisture in Food Grains – I. The Development of a Mass Transport Equation. Joural of Stored Products Research 27,1–9.         [ Links ]

Valdés–Parada, F. J., Goyeau. B. y Ochoa–Tapia, J. A. (2006). Diffusive mass transfer between a microporous medium and an homogeneous fluid: Jump boundary conditions. Chemical Engineering Science 61(5), 1692–1704.         [ Links ]

Valencia–López, J. J., Espinosa–Paredes, G. y Ochoa–Tapia, J. A. (2003). Mass transfer jump condition at the boundary between a porous medium and a homogeneous fluid. Journal of Porous Media 6 (1), 33–49.         [ Links ]

Whitaker, S. (1986). Flow in porous media I: a theoretical derivation of Darcy's law. Transport in Porous Media 1, 3–25.         [ Links ]

Whitaker, S. (1999). The Method of Volume Averaging. Kluwer Academic Publishers. Dordrecht, The Netherlands.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons