SciELO - Scientific Electronic Library Online

 
vol.8 número3Efecto del grado de acetilación en las características morfológicas y fisicoquímicas del almidón de plátanoComportamiento viscoelástico de disoluciones y tabletas hidratadas de hidroxipropilmetil celulosa, carboximetil celulosa sódica y sus mezclas índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.8 no.3 Ciudad de México dic. 2009

 

Materiales

 

Estudio por DRX de la intercalación–pilarización de un mineral de arcilla tipo 2:1 con especies polioxocatiónicas de aluminio

 

XRD study on the intercalation–pillaring of a 2:1 clay mineral with aluminum polyoxocationic species

 

J. G. Carriazo1*, M–J. Saavedra2 y M–F. Molina1

 

1 Departamento de Química, Universidad Nacional de Colombia, Carrera 30 No. 45–03. Bogotá–Colombia. *Autor para la correspondencia. E–mail: jcarriazo@unal.edu.co Fax: 057–1–3165220

2 Departamento de Química, Universidad Pedagógica Nacional, Calle 72 No. 11–86. Bogotá–Colombia.

 

Recibido 16 de Mayo 2009
Aceptado 7 de Agosto 2009

 

Resumen

El presente trabajo muestra la intercalación–pilarización exitosa de un mineral tipo esmectita (bentonita) con especies polioxocatiónicas de aluminio empleando soluciones precursoras de nitrato básico, la obtención en estado sólido del agente pilarizante y su caracterización por difracción de rayos X (DRX). La intercalación–pilarización del mineral procede mediante la inserción inicial de policationes con tamaño aproximado de 9.6 Å y la posible formación de fase γ–AlOOH luego de la calcinación. La caracterización del agente pilarizante, obtenido de la solución precursora de nitrato de aluminio en medio básico, permite identificar especies cristalinas cuyos patrones de difracción revelan la presencia probable del ión ε–keggin (nitrato de ε–keggin).

Palabras clave: arcilla pilarizada, ión keggin, intercalación–pilarización, esmectita.

 

Abstract

This work shows the successful intercalation–pillaring of a smectite–type clay mineral (bentonite) with aluminum polyoxocationic species by precursor solutions from basic nitrate, as well as the preparation in solid state of the pillaring agent and its characterization by X–ray diffraction (XRD). The intercalation–pillaring process is carried out through the initial insertion of polycations around 9.6 Å in size and the possible formation of γ–AlOOH after calcined. Characterization of the pillaring agent obtained by direct way from precursor solution (basic aluminum nitrate) allowed the identification of crystalline species whose diffraction patterns show the possible occurrence of the ε–keggin ion (ε–keggin nitrate).

Keywords: pillared clay, keggin ion, intercalation–pillaring, smectite.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Referencias

Allouche L., Taulelle F. (2003). Conversion of Al13 keggin s into Al30: a reaction controlled by aluminum monomers. Inorganic Chemistry Communications 6, 1167–1170.         [ Links ]

Aouad A., Pineaou A., Tchoubar D., Bergaya F. (2006). Al–pillared montmorillonite obtained in concentrated media. Effect of the anions (nitrate, sulphate and chloride) associated with the Al species. Clays and Clays Minerals 54, 626–627.         [ Links ]

Barrera–Vargas M., Valencia–Rios J., Vicente M., Korili S., Gil A. (2005). Effect of the platinum content on the microstructure and micropore size distribution of Pt/alumina–pillared clays. Journal of Physical Chemistry B 109, 23461–23465.         [ Links ]

Bottero J. Y., Cases J. M., Flessinger F., Poirier J. E. (1980). Studies of hydrolyzed aluminum chloride solutions. 1. Nature of aluminum species and composition of aqueous solutions. Journal of Physical Chemistry 84, 2933–2939.         [ Links ]

Casey W. H. (2006). Large aqueous aluminum hydroxide molecules. Chemical Reviews 106, 1–16.         [ Links ]

Carriazo J., Martínez L., Odriozola J. A., Moreno S., Molina R., Centeno M. A. (2007a)Gold supported on Fe, Ce and Al pillared bentonites for CO oxidation reaction. Applied Catalysis B 72, 157–165.         [ Links ]

Carriazo J., Centeno M. A., Odriozola J. A., Moreno S., Molina R. (2007b) Effect of Fe and Ce on Al–pillared bentonite and their performance in catalytic oxidation reactions. Applied Catalysis A 317, 120–128.         [ Links ]

Carriazo J., Molina R., Moreno S. (2007c). Caracterización estructural y textural de una bentonita colombiana. Revista Colombiana de Química 36(2), 213–225.         [ Links ]

Carriazo J., Guélou E., Barrault J., Tatibouët J–M., Molina R., Moreno S. (2005). Synthesis of pillared clays containing Al, Al–Fe or Al–Ce–Fe from a bentonite: characterization and catalytic activity. Catalysis Today 107–108, 126–132.         [ Links ]

Centi G., Perathoner S. (2008). Catalysis by layered materials: A review. Microporous and Mesoporous Materials 107, 3–15.         [ Links ]

De Stefanis A., Tomlinson A. (2006). Towards designing pillared clays for catalysis. Catalysis Today 114, 126–141.         [ Links ]

Ding Z., Kloprogge J., Frost R., Lu G., Zhu H. (2001). Porous Clays and Pillared Clays–Based Catalyst. Part 2: A Review of the Catalytic and Molecular Sieve Applications. Journal of Porous Materials 8, 273–293.         [ Links ]

Furrer G., Ludwig C., Schindler P. W. (1992). On the chemistry of the keggin Al13 polymer. Acid–Base properties. Journal of Colloid and Interface Science 149, 56–67.         [ Links ]

Gao B.–Y, Chu Y.–B., Yue Q.–Y., Wang B.–J., Wang S.–G. (2005). Characterization and coagulation of a polyaluminum chloride (PAC) coagulant with high Al13 content. Journal of Environmental Management 76, 143–147.         [ Links ]

Geiculescu A. C., Strange T. F. (2003). A microstructural investigation of low–temperature crystalline alumina films grown on aluminum. Thin Solid films 426, 160–171.         [ Links ]

Gil A., Gandía L., Vicente M. A. (2000). Recent advances in the synthesis and catalytic applications of pillared clays. Catalysis Reviews–Science and Engineering 42, 145–212.         [ Links ]

Hochepied J.–F.; Ilioukhina O., Berger M.–H. (2003). Effect of the mixing procedure on aluminum (oxide)–hydroxide obtained by precipitation of aluminum nitrate with soda. Materials Letters 57, 2817–2822.         [ Links ]

Hwang K–T; Lee H–S, Lee S–H., Chung K–C, Park S–S, Lee J–H. (2001). Synthesis of aluminium hydrates by a precipitation method and their use in coatings for ceramic membranes. Journal of the European Ceramic Society 21, 375–380.         [ Links ]

Itadani A., Tanaka M., Abe T., Taguchi H., Nagao M. (2007). Al–pillared montmorillonite clay minerals: low pressure CO adsorption at room temperature. Journal of Colloid and Interface Science 313, 747–750.         [ Links ]

Khalil K. M. S. (1998). Synthesis of short fibrous boehmite suitable for thermally stabilized transition aluminas formation. Journal of Catalysis 178, 198–206.         [ Links ]

Kloprogge J. T. (1998). Synthesis of smectites and porous pillared clay catalysts: A review. Journal of Porous Materials 5, 5–41.         [ Links ]

Moore D. M., Reynolds R. C. (1997). X–Ray Diffraction and the Identification and Analysis of Clay Minerals. New York, Oxford University Press. p.p. 16, 146–157, 229–258.         [ Links ]

Newman A. C. D., Brown G. (1987). The Chemical Constitution of Clays. In: Chemistry of Clay and Clay Minerals. London: A. C. D. Newman, editor, Mineralogical Society. p.p. 1–127.         [ Links ]

Oszkó A., J. Kiss, I. Kiricsi. (1999). XPS investigations on the feasibility of isomorphous substitution of octahedral Al3+ for Fe3+ in keggin ion salts. Physical Chemistry and Chemical Physics 1, 2565–2568.         [ Links ]

Serwicka E., Bahranowski K. (2004). Environmental catalysis by tailored materials derived from layered minerals. Catalysis Today 90, 85–92.         [ Links ]

Sterte J. (1988). Hydrothermal treatment of hydroxycation precursor solutions. Catalysis Today 2, 219–231.         [ Links ]

Thorez J. (2003). Practical XRD analysis of clay minerals. Workshop (vol. 1). Bogotá, Universidad Nacional de Colombia. p.p. 1–6, 31, 37–38. Química Vol. 8, No. 3 (2009) 299–305        [ Links ]

Tomlinson A. G. W. (1998). Characterization of pillared layered structures. Journal of Porous Materials 5, 259–274.         [ Links ]

Vaughan D. E. (1988). Pillared clays. A historical perspective. Catalysis Today 2, 187–198.         [ Links ]

Vicente M. A., Lambert J. F. (2003). Al–pillaring of saponites with the Al polication [Al13(OH)24(H2O)24]15+ using a new synthetic route. Clays and Clay Minerals 51, 169–172.         [ Links ]

Vogels R., Kloprogge J. T., Geus J. W. (2005). Homogeneous forced hydrolysis of aluminum through the thermal decomposition of urea. Journal of Colloid and Interface Science 285, 86–93.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons