Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de ingeniería química
versión impresa ISSN 1665-2738
Rev. Mex. Ing. Quím vol.9 no.3 Ciudad de México dic. 2010
Biotecnología
Surface properties of maize, fish and bovine serum protein hydrolysates
Propiedades superficiales de hidrolizados proteínicos de maíz, pescado y suero de bovino
M.E. RodríguezHuezo1, D.L. VillagómezZavala2, B. LozanoValdés3 and R. PedrozaIslas3*
1 Tecnológico de Estudios Superiores de Ecatepec. Avenida Tecnológico s/n Valle de Anáhuac. 55210. Ecatepec, Edo. México. *Corresponding author. Email: rth.pdrz@gmail.com
2 Facultad de Estudios Superiores Cuautitlán. Universidad Nacional Autónoma de México.
3 Universidad Iberoamericana. Prol. Paseo de la Reforma 880. Lomas de Santa Fe. 01219, México, D.F.
Received 3 of September 2010.
Accepted 30 of November 2010.
Abstract
The surface properties of commercial protein hydrolysates from fish (FPH), bovine serum (BSPH), maize by acid hydrolysis (MPHA) and maize by enzymatic hydrolysis (MPHE) were evaluated. The emulsifying activity (EA), stability (ES), and capacity (EC); foaming capacity (FC) and stability (FS); fat holding capacity (FHC); and solubility (S) were determined. Electric conductivity was used for evaluating the emulsifying properties. Average molecular weights were determined by SDSPAGE. FC was determined by measuring the percentage increase in volume of the hydrolysates solutions upon stirring, whilst FS! was determined by measuring the remaining foam volume after a given period of time. MPHA displayed the best EA (2555 μS) (p < 0.05); MPHE showed the best ES (49.14 min) (p < 0.05); MPHA and MPHE exhibited the highest FHC values (6.7 mL/g); and MPHE had the highest FC (62.5%) (p < 0.05). FPH displayed the highest EC (340 g oil/g protein) (p < 0.05). Highest FS was shown by MPHA. In general, the best overall properties were displayed by the maize hydrolysates.
Keywords: protein hydrolysates, hydrolysis degree, emulsifying activity, foaming activity, fat retention capability.
Resumen
Se evaluaron las propiedades de superficie de hidrolizados proteínicos comerciales de pescado (FPH), suero de bovino (BSPH), maíz por hidrólisis ácida (MPHA) y maíz por hidrólisis enzimática (MPHE). Las propiedades determinadas fueron: actividad (EA), estabilidad (ES) y capacidad emulsificante (EC); capacidad (FC) y estabilidad (FS) espumante; capacidad de retención de grasa (FHC); y solubilidad (S). Las propiedades emulsificantes se evaluaron por conductividad eléctrica. Los pesos moleculares promedio fueron determinados por electroforesis SDSPAGE. La FC se calculó midiendo el porcentaje de incremento en el volumen al agitar las soluciones con los hidrolizados. La FS, por medio del volumen remanente de la espuma en el tiempo. MPHA desarrollo la mejor EA (255 μS) (p < 0.05); MPHE tuvo la mejor ES (49.14 min) (p < 0.05); MPHA y MPHE mostraron los mayores valores de FHC (ambos con 6.7 mL/g) y el MPHE la mayor FC (62.5%) (p < 0.05). FPH tuvo la mayor EC (340 g aceite/g proteína) (p < 0.05). La mayor FS fue para MPHA. En general puede decirse que las mejores propiedades fueron exhibidas por los hidrolizados de maíz.
Palabras clave: hidrolizados proteínicos, grado de hidrólisis, actividad emulsificante, actividad espumante, retención de grasa.
DESCARGAR ARTÍCULO EN FORMATO PDF
References
AdlerNissen, J. (1986). Enzymatic hydrolysis of food proteins. Elsevier Applied Science Publishers, London, UK. [ Links ]
AOAC, (2000). "Official Methods of Analysis" 17Th ed., Association of Official Analytical Chemists, Washington, DC. [ Links ]
Caessens, P., Visser, S., Gruppen, H., and Voragen, A.G.J. (1999). βlactoglobulin hydrolysis. I. Peptide composition and functional properties of hydrolysates obtained by the action of plasmin, trypsin, and Staphilococcus aureus V8 protease. Journal of Agricultural and Food Chemistry 47, 29732979. [ Links ]
Chabanon, G., Chevalot, I., Framboisier, X., Chenu, S. and Marc, I. (2007). Hydrolysis of rapeseed protein isolates: Kinetics, characterization and functional properties of hydrolysates. Process Biochemistry 42, 14191428. [ Links ]
Cheftel, J.C., Cuq, J.L. and Lorient, D. (1989). Proteínas alimentarias, Pp. 115120. Editorial Acribia, España. [ Links ]
Dickinson, E. (2001). Milk protein interfacial layers and the relationship to emulsion stability and rheology. Colloid & Surfaces B 20, 197210. [ Links ]
Dickinson, E. and McClements, J. (1996). Advances in food colloids. Blackie Academic & Professional. London. [ Links ]
Forstrom, C. K., Vegarud, G., Langsrud, T., Risberg, E. M., and Egelandsdal, B. (2004). Hydrolyzed whey proteins as emulsifiers and stabilizers in highpressure processed dressing. Food Hydrocolloids 18, 757767. [ Links ]
Garti, N., Magdasi, S., and Rubinstein, A. (1981). A new method for stability determination of semisolid emulsions, using conductivity measurements. Colloids & Surfaces 3 (3), 221231. [ Links ]
Gornall, A.G., Bardawill, C.J., and David, M.M. (1949). Determining serum proteins by means of the biuret reaction. Journal of Biological Chemistry 177, 751766. [ Links ]
Jamdar, S.N., Rajalakshmi, V., Pednekar, M.D., Juan, F., Yardi, V., and Sharma, A. (2010). Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chemistry 121, 178184. [ Links ]
Hordur, G., Kristinson, B. and Rasco, A. (2000). Fish protein hydrolysates: Production, biochemical, and functional properties. Critical Reviews in Food Science and Nutrition 40 (1), 4381. [ Links ]
Kato, A., Fujishige, T., Matsudommi, N. and Kobayashi, K. (1985). Determination of emulsifying properties of some proteins by conductivity measurements. Journal of Food Science 50, 5659. [ Links ]
Kelfala, M.B., Amadou, I., Foh, B.M., Kamara, M.T., and Xia, W. (2010). Functionality and antioxidant properties of tilapia (Oreochromis niloticus) as influenced by the degree of hydrolysis. International Journal ofMolecular Science 11, 18511869. [ Links ]
Kristinsson, H., and Rasco, B. (2000). Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. Journal of Agricultural and Food Chemistry 48, 657666. [ Links ]
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685 [ Links ]
Lahl, W.J., and Braun, S.D. (1994). Enzymatic production of protein hydrolysates for food use. Food Technology 48(10), 6871. [ Links ]
LiceagaGesualdo, A.M. and LiChan, E.C.Y. (1999). Functional properties of fish protein hydrolysate from herring (Clupea harengus). Journal of Food Science 64, 10001004. [ Links ]
Linder, M., Fanni, J., and Parmentier, M. (1996). Functional properties of veal bone hydrolysates. Journal of Food Science 61, 712720. [ Links ]
Liu, Q., Kong, B., Xiong, Y.L., and Xia, X. (2010). Antioxidant activity and functional of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chemistry 118, 403410. [ Links ]
Mahmoud, M.I. (1994). Physicochemical and functional properties of protein hydrolysates in nutritional products. Food Technology 48(10), 8994. [ Links ]
Mahmoud, M.I., and Cordle, C.T. (2000). Protein hydrolysates as special nutritional ingredients. In: Novel macromolecules in food systems (G. Doxastakis and V. Kiosseoglou, eds.), Pp. 181215. Elsevier, Amsterdam. [ Links ]
Martínez, K.D., Carrera, S.C., RodríguezPatiño, J.M. and Pilosof, A.M.R. (2009). Interfacial and foaming properties of soy protein and their hydrolysates. Food Hydrocolloids 23, 21492157. [ Links ]
McClements, D.J. (1999). Food emulsions: Principles, practice, and techniques. CRC Press, Boca Raton, FL. [ Links ]
Miñones, C.J., and RodríguezPatinño, J.M. (2007). Phospholipids and hydrolysates from a sunflower protein isolate adsorbed at the airwater interface. Food Hydrocolloids 21, 212220. [ Links ]
Mitchell, J.R., and Ledward, D.A. (1986). Functional properties of food macromolecules. Elsevier Applied Science Publishers. London. [ Links ]
Morr, C.V., German, B., Kinsella, J. E., Regenstein, J.M., Van Buren, J.P., Kilara, A., Lewis, B.A, and Mangino, M.E. (1985). A collaborative study to develop a standardized food protein solubility procedure. Journal of Food Science 50, 17151718. [ Links ]
Ninsang, S., Lertsiri, S., Suphantharika, M., and Assavanig, A. (2005). Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial proteases. Journal ofFood Engineering 70, 571578. [ Links ]
PachecoAguilar, R., MazorraManzano, M.A., and RamírezSuíarez, J.C. (2008). Functional properties of fish protein hydrolysates from Pacific whiting ( Merluccius products) muscle produced by a commercial protease. Food Chemistry 109, 782789. [ Links ]
PDFTop (2010). Emulsions.http://www.pdftop.com/ebook/emulsions/perc.ufl.edu/courses/intephen01/_files/06_emulsion.ppt. Accessed August 4, 2010. [ Links ]
Pedersen, B. (1994). Removing bitterness from protein hydrolysates. Food Technology 48(10), 9699. [ Links ]
Pedroche, J., Yust, M.M., Lqari, H., GirónCalle, J., Alaniz, M., and Vioque J. (2004). Brassica carinata protein isolates: Chemical composition protein characterization and improvement of functional properties by protein hydrolysis. Food Chemistry 88, 337346. [ Links ]
Petruccelli, S., and Añón, M.C. (1994). Relationship between the method of obtention and structural and functional properties of soy protein isolates. 1. Structural and hydration properties. Journal ofAgricultural and Food Chemistry 42, 21612169. [ Links ]
Swift, C. E., and Sulzbzcher, W. L. (1963). Factors affecting meat proteins as emulsion stabilizers. Food Technology 15, 224226. [ Links ]
Walstra, P. (2003). Physical chemistry offoods. Marcel Dekker, Inc. New York. [ Links ]
Wilde, P. (2000). Interfaces: Their role in foam and emulsion behavior. Current Opinion in Colloid and Interface Science 5, 176181. [ Links ]