SciELO - Scientific Electronic Library Online

 
vol.9 número3Estructura de control jerárquico aplicada a un reactor de amoniaco, tipo tubular, con enfriamiento intermedioOptimización de la producción de carbón activado a partir de bambú índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.9 no.3 Ciudad de México dic. 2010

 

Materiales

 

Effect of the concentration of ionic surfactants on the electrokinetic behavior of asphaltene precipitated from a maya mexican crude oil

 

Efecto de la concentración de surfactantes iónicos en el comportamiento electrocinético de asfalteno extraído de un crudo maya mexicano

 

S. Salmón–Vega1, R. Herrera–Urbina2, M. A. Valdez 1,3* and C. Lira–Galeana4

 

1 Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo, Sonora, 83000, México.

2 Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo, Sonora, 83000, México.

3 Departamento de Física, Universidad de Sonora, Hermosillo, Sonora, 83000, México. *Corresponding author. E–mail: miguel.valdez@correo.fisica.uson.mx

4 Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, México, D.F. 07730, México.

 

Received 20 of April 2010.
Accepted 13 of September 2010.

 

Abstract

In this work we show the behaviour of the zeta potential of asphaltene when different concentrations of two cationic surfactants (cetylpyridinium chloride and dodecylamine hydrochloride) and one anionic surfactant (sodium dodecyl sulphate) interact with asphaltene particles at different pH in the aqueous phase. Asphaltene, precipitated from a Maya Mexican crude oil, was observed by Transmission electron micrographs showing that asphaltene is constituted of nanometric particles smaller than 50 nm in diameter. By changing the concentration of cetylpyridinium chloride, dodecylamine hydrochloride and sodium dodecyl sulphate from 0.01 mM to 1 mM, we were able to reverse and control the sign of the zeta potential of asphaltene, demonstrating the presence of both electrostatic and hydrophobic interaction s at the asphaltene surface. Thete interactions were alto observed by interfacial tension measurements at the toluene – water interface. It has been noticed that for low and high pH in the aqueous phase, the presence of dodecylamine hydrochloride and sodium dodecyl sulphate were not determinant on the asphaltene interfacial tension. On the contrary for pH near the IEP and pH neutral, these surfactants were more effective. The presence of cetylpiridinium hydrochloride in the aqueous phase changed the asphaltene interacial tension to very low values independent of the pH.

Keywords: asphaltene, zeta potential, ionic surfactants, interfacial tension, pH.

 

Resumen

En este trabajo se muestra el efecto de la interacción de dos surfactantes catiónicos (cloruro de cetilpiridinio e hidrocloruro de dodecilamina) y un surfactante aniónico (dodecilsulfato de sodio) en el potencial zeta de asfalteno en diferentes pH. El asfalteno fue extraído de un crudo Maya y fue observado en Microscopía de transmisión, observándose partículas de tamaño promedio de 50 nm. Variando las concentraciones de los surfactantes de 0.01 a 1 mM, pudimos controlar la carga de las partículas de asfalteno y se pudo demostrar la existencia de interacciones electrostáticas e hidrofóbicas al variar el pH en la solución acuosa. El efecto de los surfactantes en la interfase asfalteno agua fue más significativo alrededor del punto isoeléctrico del asfalteno lo cual fue determinado por tensiometría interfacial. Por el contrario, a pH bajo y alto se observó una disminución del efecto de los surfactantes en la tensión interfacial, predominando las moléculas de asfalteno en la interfase.

Palabras clave: asfalteno, potencial zeta, surfactantes iónicos, tensión interfacial, pH.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

Authors acknowledge the Instituto Mexicano del Petróleo (IMP) for the sample of crude oil, and Consejo Nacional de Ciencia y Tecnologia (CONACyT) for financial support of the present research through Grant No. ER074. S. Salmon also thanks CONACYT for her graduate studies scholarship. Contributions of Eduardo Larios of Universidad de Sonora for TEM analysis and Israel Gradilla for EDS studies are acknowledged.

 

Referencias

Abraham, T., Christendat, D., Karan, K., Xu, Z., Masliyah, J. (2002). Asphaltene silica interactions in aqueous solutions: direct force measurements combined with electrokinetic studies. Industrial and Engineering Chemistry Research 41, 21702177.         [ Links ]

Acevedo, S., Borges, B., Quintero, F., Piscitelly, V., Gutierrez, L.B. (2005). Asphaltenes and other natural surfactants from Cerro Negro crude oil. Stepwise adsorption at the water/toluene interface: film formation and hydrophobic effects. Energy & Fuels 19, 1948–1953.         [ Links ]

Acevedo, S., Ranaudo, M. A., Escobar, G., Gutierrez, L. B., and Gutierrez X. (1995). Asphaltenes: Fundamentals and applications. Sheu, E.Y., and Mullins, O. C. (Eds.), Pp 131–140. Plenum Press, New York.         [ Links ]

Acevedo, S., Zuloaga, C., Rodriguez, P. (2008). Aggregation–Dissociation Studies of Asphaltene Solutions in Resins Performed Using the Combined Freeze Fracture–Transmission Electron Microscopy Technique. Energy & Fuels 22(4), 23322340.         [ Links ]

Adamson, A. (1997). Physical chemistry of surfaces. 6th edition, Wiley–Interscience.         [ Links ]

ASTM. (1983). Annual Book of ASTM Standards, vol. 5.0, Pp 158. Philadelphia, PA.         [ Links ]

Baginska, K., Gawel, I. (2004). Effect of origin and technology on the chemical composition and colloidal stability of bitumens. Fuel Processing Technology 85(13), 1453–1462.         [ Links ]

Barry T. I., Ottewill, R. H. (1991). Cationic surfactants, physical chemistry, chapter 3. (D. N. Rubingh and P. M. Holland, eds.). Marcel Deckker, Inc., New York.         [ Links ]

Camacho–Bragado, G. A., Santiago, P., Marin–Almazo, M., Espinosa, M., Romero, E. T., Murgich, J., Rodriguez–Lugo, V., Lozada–Cassou, M., Jose–Yacaman, M. (2002). Fullerenic structures derived from oil asphaltenes. Carbon 40(15), 2761–2766.         [ Links ]

Castro, S. H., Vurdela, R. M., Laskowski, J. S. (1986). The surface association and precipitation of surfactant species in alkaline dodecylamine hydrochloride solutions. Colloids and Surfaces 21, 87–100.         [ Links ]

Chatterjee, A., Moulik, S. P., Sanyal, S. K., Mishra, B. K., Puri, P. M. (2001). Thermodynamics of micelle formation of ionic surfactants: A critical assessment for sodium dodecyl sulfate, cetyl pyridinium chloride and dioctyl sulfosuccinate (Na Salt) by microcalorimetric, conductometric, and tensiometric measurements. Journal of Physical Chemistry B 105(51), 12823–12831.         [ Links ]

Chaverot, P., Cagna, A., Glita, S., Rondelez, F. (2008). Interfacial Tension of Bitumen–Water Interfaces. Part 1: Influence of Endogenous Surfactants at Acidic pH. Energy & Fuels 22, 790–798.         [ Links ]

Dai, Q. and Laskowski, J. S. (1991). The Krafft pion of dodecylammonium chloride: pH effect. Langmuir 7, 1361–1364.         [ Links ]

Dwiggins, C. W., Jr. (1965). A small angle x–ray scattering study of the colloidal nature of petroleum. Journal ofPhysical Chemistry 69(10), 3500–3506.         [ Links ]

Fuerstenau, M. C., Palmer, B. R. (1976). Flotation, Volume 1, Chapter 7, A. M. Gaudin Memorial Volume. (Fuerstenau, M. C, Editor). Published by American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc. New York, New York.         [ Links ]

Fuerstenau, W. D. and Herrera–Urbina, R. (1991). Cationic surfactants, physical chemistry, chapter 8, D. N. (Rubingh and P. M. Holland, eds.). Marcel Deckker, Inc., New York.         [ Links ]

Goddard, E. D., Benson, G. C. (1957). Conductivity of aqueous solutions of some paraffin chain salts. Canadian Journal of Chemistry 35, 986–990        [ Links ]

González, G., Neves, G. B. M., Saraiva, S. M., Lucas, E. F., Anjos de Sousa, M. (2003). Electrokinetic characterization of asphaltenes and the asphaltenes–resins interaction. Energy & Fuels 17, 879–886.         [ Links ]

Grijalva–Monteverde, H., Arellano–Tanori, O.V., Valdez, M. A. (2005). Zeta Potential and Langmuir Films of Asphaltene Polar Fractions. Energy & Fuels 19(6), 2416–2422.         [ Links ]

Guiliano, M., Boukir, A., Doumenq, P., Mille, G., Crampon, C. Badens, E., Charbit, G. (2000). Supercritical Fluid Extraction of Bal 150 Crude Oil Asphaltenes. Energy and Fuels 14(1), 89–94.         [ Links ]

Gundersen, S. A., Ese, M., Sjoblom, J. (2001). Langmuir Surface and interface Films of Lignosulfonates and Kraft Lignins in the Presence of Elecrolites and Asphaltenes: Correlation to Emulsion Stability. Colloids and Surfaces A 182, 199–218.         [ Links ]

Havre, T. E., Sjöblom, J. (2003). Emulsion stabilization by means of combined surfactant multiplayer (D–phase) and asphaltene particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 228, 131–142.         [ Links ]

Ho, B., Briggs, D. E. (1982). Small angle X–ray scattering from coal–derived liquids. Colloids and Surfaces 4, 285.         [ Links ]

Hunter, R. J. (1981). Zeta Potential in Colloid Science: Principles and Applications. Pp 386, Academic Press, New York.         [ Links ]

Jada, A., Chaou, A. A. (2003). Surface properties of petroleum oil polar fraction as investigated by zetametry and DRIFT spectroscopy. Petroleum Science and Engineering 39, 287–296.         [ Links ]

Jada, A., Salou, M. (2002). Effects of the asphaltene and resin contents of the bitumens on the water–bitumen interface properties. Petroleum Science and Engineering 33, 185–193.         [ Links ]

Joy, A. S., Watson, D. (1964). Adsorption of collector and potential determining ions in flotation of hematite with dodecylamine. Transactions, Institution of mining and metallurgy, London 73, 323–334.         [ Links ]

Kokal, S., Tang, T., Schramm, L., Sayegh, S. (1995). Electrokinetic and adsorption properties of asphaltenes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 94, 253–265.         [ Links ]

Laskowski, J. S. (1999). Advances in Flotation Technology, Weak Electrolyte Collectors. (Fuerstenau, B. K. Parekh and J. D. Miller, eds.), Published by the Society for Mining, Metallurgy, and Exploration, Inc.         [ Links ]

Laskowski, J. S., Vurdela, R. M. and Liu, Q. (1988). The colloidal chemistry of weak electrolyte collector flotation. Proceedings of the 16th International Mineral Processing Congress, (K. S. E. Forssberg, ed.), 703–715.         [ Links ]

Laskowski, J. S., Yordan, J. L., Ion, R. H. (1989). Electrokinetic potential of microbubbles generated in aqueous solutions of weak electrolyte type surfactants. Langmuir 5, 373–376.         [ Links ]

Leja, J. (1982). Surface Chemistry of Flotation. Plenum Press, New York. Marczewski, A. W., Szymula M. (2002). Adsorption of asphaltenes from toluene on mineral surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects 208, 259–266.         [ Links ]

Mordkovich, V.Z., Umnov, A.G., Inoshita, T. (2000). Nanostructure of laser pyrolysis carbon blacks: observation of multiwall fullerenes. International Journal of Inorganic Materials 2(4), 347–353.         [ Links ]

Mousavi–Dehghani, S.A., Riazi, M.R., Vafaie–Sefti, M., Mansoori, G. A. (2004). An analysis of methods for determination of onsets of asphaltene phase separations. Journal ofPetroleum Science & Engineering 42(2–4), 145–156.         [ Links ]

Östlund, J. A., Nydén, M., Fogler, H. S., Holmberg, K. (2004). Functional groups in fractionated asphaltenes and the adsorption of amphiphilic molecules. Colloids and Surfaces A: Physicochemical Engineering Aspects 234, 95–102.         [ Links ]

Parra–Barraza, H., Hernández–Montiel, D., Lizardi, J., Hernández, J., Herrera Urbina, R., Valdez, M. A. (2003). The zeta potentialtencial and surface properties of asphaltenes obtained with different crude oil/n–heptane proportions. Fuel 82, 869–874.         [ Links ]

Pedersen, C., Andersen, S. (2000). Second International conference petroleum phase behaviour fouling, Copenhagen, Denmark. Paper 02:27–31.         [ Links ]

Peña, A. A., Hirasaki, G. J., Millar, C. A. (2005). Chemically induced destabilization of water–in–crude oil emulsions. Industrial and Engineering Chemistry Research 44, 1139–1149.         [ Links ]

Perez–Hernandez, R., Mendoza–Anaya, D., Mondragon–Galicia, G., Espinosa, M. E., Rodriguez–Lugo, V., Lozada, M., Arenas–Alatorre, J. (2003). Microstructural study of asphaltene precipitated with methylene chloride and n–hexane. Fuel 82(8), 977–982.         [ Links ]

Piasecki, D. A., Wirth, M. J. (1994). Spectroscopic Probing of the Interfacial Roughness of Sodium Dodecyl Sulfate Adsorbed to a Hydrocarbon Surface. Langmuir 10(6), 1913–18.         [ Links ]

Pietraru, G–M., Cramb, D.T. (2003). Changes in asphaltene microenvironments evidenced by fluorescence solvatochromism. Langmuir 19, 1026–1035.         [ Links ]

Poteau, S., Argillier, F. (2005). Influence of pH on stability and dynamic properties of asphaltenes and other amphiphilic molecules at the oil–water interface. Energy and Fuels 19, 1337–1341.         [ Links ]

Poteau, S., Arguillier, J., Langevin, D., Pincet, F., Perez, E. (2005). Influence of pH on Stability and Dynamic properties of asphaltenes and other amphipilic molecules at the oil water interface. Energy and Fuels 19, 1337–1341.         [ Links ]

Ravey, J. C., Ducouret, G., Espinat, D. (1988). Asphaltene macrostructure by small–angle neutron scattering. Fuel 67(11), 1560–7.         [ Links ]

Ravishankar, S. A., Yoon, R. H. (1995). The role of hydrophobic forces in amine flotation of silica. In Proceedings of Mineral Processing Recent Advances and Trends, pp. 105–117, Kanpur, India.         [ Links ]

Rodriguez–Abreu, C., Delgado–Linares, J. G., Bullon, J. (2006). Properties of Venezuelan asphaltenes in the bulk and dispersed State. Journal of Oleo Science 55, 563–571.         [ Links ]

Salmón–Vega, S., Herrera–Urbina, R., Valdez–Covarrubias, M., Lira– Galeana, C. (2009). The zeta potential of solid asphaltene in aqueous solutions and in 50:50 water+ethylene glycol (v/v) mixtures containing ionic surfactants. Journal of Petroleum Science and Engineering 69, 174180.         [ Links ]

Sheu, E. Y., Storm, D. A. (1995). Colloidal properties of asphaltenes in organic solvents. In: Asphaltenes: Fundamentals and Applications. Plenum Press, (E.Y. Sheu, O.C. Mullins, Eds.) New York.         [ Links ]

Sheu, E. Y., De Tar, M. M., Storm, D. A. (1992). Interfacial properties of asphaltenes. Fuel 71, 1277–1281.         [ Links ]

Sjöblom, J., Soderlund, H., Lindblad, S., Johansen, E. J., Skjarvo, I. M. (1990). Water–in– crude oil emulsions from the Norwegian continental shelf. Part II. Chemical destabilization and interfacial tensions. Colloid and Polymer Science 268, 389–398.         [ Links ]

Spiecker, P.M., Gawrys, K. L., Trail, C. B., Kilpatrick, P. K. (2003). Effects of petroleum resins on asphaltene aggregation and water–in–oil emulsion formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 220, 9–27.         [ Links ]

Stalidis, G., Avranas, A., Jannakoudakis, D. (1990). Interfacial properties and stability of oil–in–water emulsions stabilized with binary mixtures of surfactants. Journal of Colloid Interface Science 135, 313–324.         [ Links ]

Sztukowski, D. M., Jafari, M. A., Alboudwarej, H., Yarranton, H. W. (2003). Asphaltene self–association and water–in–hydrocarbon emulsions. Journal of Colloid Interface Science 265, 179–186.         [ Links ]

Sztukowski, D. M., Yarranton, H. W. (2005). Rheology of asphaltene–toluene/water interface. Langmuir 21 , 11651–11658.         [ Links ]

Treiner, C., Makayssi, A. (1992). Structural micellar transition for dilute solutions of long chain binary cationic surfactant systems: a conductance investigation. Langmuir 8(3), 794–800.         [ Links ]

Trejo, F., Ancheyta, J., Rana, M. S. (2009). Structural characterization of asphaltenes obtained from hydroprocessed crude oils by SEM and TEM. Energy & Fuels 23(1), 429439.         [ Links ]

Won, C–W, Siffert, B. (1998). Preparation by sol–gel method of SiO2 and mullite (3Al2O3·2SiO2) powders and study of their surface characteristics by inverse gas chromatography and zetametry. Colloids and Surfaces, A: Physicochemical and Engineering Aspects 131(1–3), 161–172.         [ Links ]

Xia, L., Lu, S., Cao, G. (2004). Stability and demulsification of emulsions stabilized by asphaltenes or resins. Journal of Colloid Interface Science 271, 504–506.         [ Links ]

Xu, Y., Koga, Y., Strausz, O. P. (1994). Characterization of Athabasca asphaltenes by small–angle X–ray scattering. Fuel 74, 960.         [ Links ]

Yarranton, H. W., Hussein, H. Masliyah, J. H. (2000). Water–in–hydrocarbon emulsions stabilized by asphaltenes at low concentrations. Journal of Colloid Interface Science 228, 52–63.         [ Links ]

Yoon, R–H., Yordan, J. L. (1986). zeta potential measurements on microbubbles generated using various surfactants. Journal of Colloid Interface Science 113, 430–436.         [ Links ]

Zhang, L. Y., Lopetinsky, R., Xu, Z., Masliyah, J. H. (2005). Asphaltene monolayers at a toluene/water interface. Energy and Fuels 19, 1330–1336.         [ Links ]

Zhang, L. Y., Xu, Z., Masliyah, J. H. (2003). Langmuir and Langmuir–Blodgett films of mixed asphaltene and a demulsifier. Langmuir 19, 9730–9741.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons