SciELO - Scientific Electronic Library Online

 
vol.12 número1Una propuesta simple para modelar cinéticas de curado isotérmicas índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.12 no.1 Ciudad de México abr. 2013

 

Polímeros

 

Propiedades mecánicas y de barrera de películas elaboradas con harina de arroz y plátano reforzadas con nanopartículas: Estudio con superficie de respuesta

 

Mechanical and barrier properties of film elaborated with rice and banana flour reinforced with nanoparticles: Study with response surface

 

M.L. Rodriguez-Marín1, L.A. Bello-Perez1*, H. Yee-Madeira2 y R.A. González-Soto1

 

1 Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional. Km 6 carr. Yautepec-Jojutla, Calle Ceprobi No. 8, Colonia San Isidro, Apartado Postal 24, C.P 62731, Yautepec, Morelos, México. *Autor para la correspondencia. E-mail: labellop@ipn.mx Tel. +52 735 3942020, Fax: +52 735 3941896.

2 Departamento de Física, Escuela Superior de Física y Matemáticas-IPN, Edificio 9. U.P. 'Adolfo López Mateos' Col. Lindavista C.P. 07738, México, D. F., México.

 

Recibido 18 de Noviembre de 2012
Aceptado 18 de Enero de 2013

 

Resumen

Se prepararon películas de harinas de arroz y plátano mediante el método de vaciado en placa, usando un diseño central compuesto rotacional para optimizar sus propiedades mecánicas y de barrera. Se evaluaron diferentes concentraciones de glicerol y de nanopartículas (montmorillonita de sodio). Mediante el análisis de superficie de respuesta se encontró que cuando se tiene una combinación de altas concentraciones de montmorillonita con bajas concentraciones de glicerol, se mejoran las propiedades, obteniéndose películas rígidas con mejores propiedades de barrera. Estas características son importantes para empaque de alimentos, ya que de esta manera pueden conservar su integridad.

Palabras clave: nanocompositos, propiedades mecánicas, permeabilidad al vapor de agua, superficie de respuesta.

 

Abstract

Banana and rice flour films were prepared using casting method, and rotatable central composite design was used to optimize their mechanical and barrier properties. Different concentrations of glycerol and nanoclay (Sodium montmorillonite) were evaluated using response surface analysis, determining that glycerol is the factor that has influence on the mechanical and barrier properties of the films. However, when there is a combination of high montmorillonite with low glycerol concentration, the properties were improved, resulting rigid films with better properties. These characteristics are important for food packaging due to that these films can maintain the integrity of food products.

Keywords: nanocomposites, mechanicals properties, water vapor permeability, response surface.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Referencias

Alvaro-Gonzalez, J.S., Chanona-Perez, J.J., Welti-Chanes, J.S., Calderón-Dominguez, G., Arzate-Vázquez, L., Pacheco-Alcalá, S.U., Garibay-Febles, V., Gutiérrez-López, G.F. (2012). Optical, microstuctural, functional and nanomechanical properties of aloe vera gel/gellan gum edible films. Revista Mexicana de Ingeniería Química 11, 193-210.         [ Links ]

Aouada, F.A., Mattoso, L.H.C., Longo, E. (2011). New strategies in the preparation of exfoliated thermoplastic starch-montmorillonitenanocomposites. Industrial Crops and Products 34, 1502-1508.         [ Links ]

ASTM (1987). Standard methods for water vapor transmission of materials (E96-80). Annual Book of ASTM Standards, Philadelphia, PA: American Society for Testing and Materials.         [ Links ]

Benderly, D., Osorio, F., Ijdo, L.W. (2008). PVC nanocomposites-nanoclay chemistry and performance. Journal of vinyl and additive technology 14, 155-162.         [ Links ]

Chen, B., Evans, J.R.G. (2005). Thermoplastic starch-clay nanocomposites and their characteristics. Carbohydrate Polymers 61, 455-463.         [ Links ]

Chiou, B-S., Wood, D., Yee, E., Imam, H. S., Glenn, M.G., Orts, W.J. (2007). Extruded starch-nanoclay nanocomposites: Effects of glycerol and nanoclay concentration. Polymer Engineering and Science 47, 1898-1904.         [ Links ]

Chivrac, F., Pollet, E., Dole, P., Avérous, L. (2010). Starch.basednano-biocomposites: Plastizacizer impact on the montmorillonite exfoliation process. Carbohydrate Polymers 79, 941-947.         [ Links ]

Colla, E., Sobral, P.J.D.A., Menegalli, F.C. (2006). Amaranthuscruentus flour edible films: influence of stearic acid addition, plasticizer concentration, and emulsion stirring speed on water vapor permeability and mechanical properties. Journal of agricultural and Food Chemistry 54, 6645-6653.         [ Links ]

Dias, A.B., Müller, C.M.O., Larotonda, D.S.F., Laurindo, J.B. (2010). Biodegradables films based on rice and rice flour. Journal of Cereal Science 51, 213-219.         [ Links ]

Dias, A.B., Müller, C.M.O., Larotonda, F.D.S., Laurindo, J.B. (2010). Mechanical and barrier properties of composites films based on rice flour and cellulose fibers. LTW Food Science and Technology 44, 535-542.         [ Links ]

Dias-Alves, V., Mali., S., Beléia, A., Grossmann, M.V.E. (2007). Effect of glycerol and amylose enrichment on cassava starch film properties. Journal of Food Engineering 78, 941-946.         [ Links ]

Figueroa-Preciado, G. (2003). Optimización de una superficie de respuesta utilizando JMP IN. Memoria, semana XVII/XIII de investigación y docencia en matemáticas, Universidad de Sonora, Hermosillo.         [ Links ]

Gontard, N., Guilbert, S., Cuq, J-L. (1992). Edible wheat gluten films: Influence of the main process variables on film properties using response surface methodology. Journal of Food Science 57, 190-199.         [ Links ]

Guerra-Della Valle, D., Bello-Pérez, L.A., González-Soto, R.A., Solorza-Feria, J. y Arámbula-Villa, G. (2008). Effect of reaction time on the acetylation of plantain starch. Revista Mexicana de Ingeniería Química 7, 283-291.         [ Links ]

Gianellis, P. (1996). Polymer Layered Silicate Nanocomposites. Advanced Materials 8, 29-35.         [ Links ]

Huang, M., Yu, J., Ma, X. (2006). High mechanical performance MMT-urea and formamide-plasticized thermoplastic cornstarch biodegradable nanocomposites. Carbohydrate Polymers 63, 693-399.         [ Links ]

Kamperapappun, P., Aht-ong, D., Pentrakoon, D., Srikulkit, K. (2007). Preparation of cassava starch/montmorillonite composite film. Carbohydrate Polymers 67, 155-163.         [ Links ]

Majdzadeh-Ardakani, K., Navarchian, A.H., Sadeghi, F. (2009). Optimization of mechanical properties of thermoplastic starch/clay nanocomposites. Carbohydrate Polymers 79, 547-554.         [ Links ]

Mali, S., Grossmann, M. V. E., García, M. A., Martino, M. N. and Zaritzky, N. E. 2004. Barrier, mechanical and optical of plasticized yam starch films. Carbohydrates Polymers 56, 129-135.         [ Links ]

Mali, S., Grossmann, M.V.E., García, M.A., Martino, M.N., Zaritzky, N. (2002). Microstructural characterization of yam starch films. Carbohydrate Polymers 50, 379-386.         [ Links ]

Mali, S., Grossmann, Sakanaka, F. Ysamashita, Grossmann, M.V.E. 2005. Water sorption and mechanical properties cassava starch films and their relation to plasticizing effect. Carbohydrate Polymers 60, 283-289.         [ Links ]

Mariniello, L., Di Pierro, P., Esposito, C., Sorrentino, A., Masi, P., Porta, R. (2003). Preparation and mechanical properties of edibles soy flour films obtained in the absence of transglutaminase. Journal of Biotechnology 102, 191-198.         [ Links ]

Núñez-Santiago, M.C., García-Suarez, F. J., Gutierrez-Meraz, F., Sanchez-Rivera, M. M., Bello-Pérez, L. A., (2011). Some intrinsic and extrinsic factors of acetilated starches: morphological, physicochemical and structural. Revista Mexicana de Ingeniería Química 10, 501-512.         [ Links ]

Mondragon, M., Mancilla, J. E., Rodriguez-González, J. (2008). Nanocomposites from plasticized high-amilopectin, normal and high-amilose maize starches. Polymer Engineering and Science 48, 1262-1267.         [ Links ]

Pelissari, F. M., Sobral, P. J., A., Menegalli, F. C. (2012). Comparative study on the properties of flour and starch films of plantain bananas. Food Hidrocolloids 30, 681-690.         [ Links ]

Rivas-González, M., Zamudio-Flores, P.B. y Bello-Pérez, L.A. (2009). Efecto del grado de acetilación en las características morfológicas y fisicoquímicas del almidón de plátano. Revista Mexicana de Ingeniería Química 8, 291-298.         [ Links ]

Romero-Bastida, C. A., Zamudio-Flores, P.B., Bello-Pérez, L. A., (2011). Antimicrobianos en películas de almidón oxidado de plátano: efecto sobre la actividad antibacteriana, microestructura, propiedades mecánicas y de barrera. Revista Mexicana de Ingeniería Química 10, 445-453.         [ Links ]

Sothornvit, R., Pitak, N. (2007). Oxygen permeability and mechanical properties of banana films. Food Research International 40, 365-370.         [ Links ]

Tang, S., Zou, P., Xiong, H., Tang, H., (2008). Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films. Carbohydrate polymers 72, 521-526.         [ Links ]

Tapía-Blacido, D., Sobral, P.J., Menegalli, F.C. (2005). Development and characterization of biofilms based on amaranth flour (amaranthuscaudatus). Journal of Food Engineering 67, 215-223.         [ Links ]

Wilhelma, H.M., Sierakowskia, M.R., Souza, G.P., Wypych, F. (2003). Starch films reinforced with mineral clay. Carbohydrate Polymers 52, 101-110.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons