Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de ingeniería química
versión impresa ISSN 1665-2738
Rev. Mex. Ing. Quím vol.12 no.2 Ciudad de México ago. 2013
Ingeniería de procesos
Estimación del coeficiente de transferencia de calor global a bajas presiones en un condensador helicoidal integrado a un transformador térmico
Estimation of the condensation heat transfer coefficient for steam water at low pressure in a coiled double tube condenser integrated to a heat transformer
O. Flores1, V. Velázquez1, M. Meza1, H. Horacio1, D. Juárez2 y J. A. Hernández2*
1 Posgrado en Ingeniería y Ciencias Aplicadas de la Universidad Autónoma del Estado de Morelos. Av. Universidad No. 1001, Col Chamilpa, CP. 62209, Cuernavaca, Morelos, México.
2 Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAp), Universidad Autónoma del Estado de Morelos (UAEM). Av. Universidad No. 1001, Col Chamilpa, CP. 62209, Cuernavaca, Morelos, México. * Autor para la correspondencia. E-mail: alfredo@uaem.mx Tel. 52-777-329-70-84, Fax. 52-777-329-70-84.
Recibido 17 de octubre de 2012
Aceptado 23 de marzo de 2013
Resumen
Se realizó un estudio experimental para calcular el coeficiente de transferencia de calor de condensación de vapor de agua en un condensador de doble tubo helicoidal. El vapor fluye por el tubo interno y por la sección anular fluye a contra corriente agua de enfriamiento. La presión de operación del condensador se encuentra dentro del intervalo de 4 a 9 kPa con un número de Reynolds de vapor entre 7200 y 23200. Los flujos másicos por unidad de área del agua de enfriamiento están en un intervalo de 450 a 850 kg/m2s. El coeficiente de transferencia de calor de condensación es calculado por dos métodos: el primero es en base al balance de energía y ecuaciones de transferencia de calor; en el segundo, se utilizó la técnica Wilson Plot. Los valores calculados del coeficiente de transferencia de calor de condensación muestran similitud entre ambos métodos. El intervalo de los coeficientes de condensación obtenidos es de 2200 W/(m2 °C) ≤ αcon≤ 5500 W/(m2 oC). Además, una correlación para la estimación del coeficiente de condensación en función del número de Re y Pr es propuesta.
Palabras clave: coeficientes de transferencia de calor, condensación, condensador helicoidal, Wilson Plot, transformador térmico.
Abstract
An experimental study was conducted to calculate the condensation heat transfer coefficient of steam water in a double helical tube condenser. The steam flows through the inner tube and the cooling water flows in counter flow in the annular section. The operating pressure of the condenser is ranging from 4 kPa to 9 kPa and the Reynolds number of steam is ranging from 7200 to 23200. The mass flux of the cooling water is ranging from 450 kg/m2s to 850 kg/m2s. The heat transfer coefficient is calculated by two methods: the first is based on energy balance and heat transfer equations, and the second by Wilson Plot method. The heat transfer coefficient results shows similarity between both methods and it is ranging from 2200 W/m2oC to 55500 Wrm2oC. Furthermore, we propose a correlation for the condensation heat transfer coefficient based on the Nusselt, Reynolds and Prandtl numbers.
Keywords: heat transfer coefficient, steam, coiled condenser, Wilson Plot, heat transformer.
DESCARGAR ARTÍCULO EN FORMATO PDF
Referencias
Colorado, D., Hernández, J.A., García-Valladares, O., Huicochea, A. y Siqueiros, J. (2011). Numerical simulation and experimental validation of a helical double-pipe vertical condenser. Applied Energy 88, 2136-2145. [ Links ]
Colorado-Garrido, D., Santoyo-Castelazo, E., Hernández, J.A., García-Valladares, O., Siqueiros, J. y Juarez-Romero, D. (2009). Heat transfer of a helical double-pipe vertical evaporator: Theoretical analysis and experimental validation. Applied Energy 86, 1144-1153. [ Links ]
Dittus, F.W. y Boelter, L.M.K. (1930). Heat transfer in automobile radiators of the tubular type. University of California Publications in Engineering 2, 443-461. [ Links ]
Escobar, R.F., Juárez, D., Siqueiros, J., Irles, C. y Hernandez, J.A. (2008). On-line COP estimation for waste energy recovery heat transformer by water purification process. Desalination 222, 666-672. [ Links ]
Fernández-Seara, J., Uhíaa, F. J., Sieres, J. y Campo, A. (2005). Experimental apparatus for measuring heat transfer coefficients by the Wilson Plot method. European Journal of Physics 26, 1-11. [ Links ]
Fernández-Seara, J., Uhíaa F. J., Sieres, J. y Campo, A. (2007). A general review of the Wilson Plot method and its modifications to determine convection coefficients in heat exchange devices. Applied Thermal Engineering 27, 2745-2757. [ Links ]
Garcia-Valladares, O. (2003). Review of in-tube condensation heat transfer correlations for smooth and microfin tubes. Heat Transfer Engineering 24, 6-24. [ Links ]
Han, J.T., Lin, C.X. y Ebadian, M.A. (2005). Condensation heat transfer and pressure drop characteristics of R-134a in an annular helical pipe. International Communications in Heat and Mass Transfer 32, 1307-1316. [ Links ]
Hernández-Escoto, H. y Hernández-Castro, S. (2006). Energy integration in distillation sequences for the separation of quaternary mixtures. Revista Mexicana de Ingenieria Quimica 5, 17-26. [ Links ]
Hernández, J.A., Juárez-Romero, D., Morales, L.I. y Siqueiros, J. (2008). COP prediction for the integration of a water purification process in a heat transformer: with and without energy recycling. Desalination 219, 66-80. [ Links ]
Holland, F. A., Siqueiros, J., Santoyo, S., Heard C. L. y Santoyo E. R. (1999). Water purification using heat pumps. Editorial E & FN Spon, London. [ Links ]
Kakaç, S. y Liu, H. (2002). Heat exchangers: selection, rating, and thermal design. Second Edition. Editorial CRC. Boca Raton, Florida. [ Links ]
Kumar, R., Varma, H.K., Agragawal, K.N. y Mohanty, B. (2001). A comprehensive study of modified Wilson Plot technique to determine the heat transfer coefficient during condensation of steam and R-134a over single horizontal plain and finned tubes. Heat Transfer Engineering 22, 3-12. [ Links ]
Medina-Leaños, R., Segovia-Hernandez, J.G. y Felix-Flores, M.G. (2011). Dynamic behavior thermally coupled reactive distillation sequences for different operating conditions. Revista Mexicana de Ingeniería Química 10, 147-160. [ Links ]
Morales-Fuentes, A., Picón-Nuñez, M. y Martinez-García, M. (2005). Effect of the network arrangement on the total heat transfer surface area in cooling systems. Revista Mexicana de Ingeniería Química 5, 93-99. [ Links ]
Manlapaz, R. L., y Churchill, S. W. (1980). Fully developed laminar flow in a helically coiled tube of finite pitch. Chemical Engineering Communications 7, 57-78. [ Links ]
Renny-Timothy, J. y Vijaya Raghavan, G.S. (2007). Thermally dependent viscosity and non-Newtonian flow in a double-pipe helical heat exchanger. Applied Thermal Engineering 27, 862-868. [ Links ]
Paisarn Naphon. (2007). Thermal performance and pressure drop of the helical-coil heat exchangers with and without helically crimped fins. International Communications in Heat and Mass Transfer 34, 321-330. [ Links ]
Prabhanjan, D.G., Raghavan, G.S.V. y Rennie, T.J. (2002). Comparison of heat transfer rates between a straight tube heat exchanger and a helically coiled heat exchanger. International Communications in Heat and Mass Transfer 29, 185-191. [ Links ]
Rivera, W., Best, R. Hernandez, J., Heard, C.L. y Holland, F.A. (1994). Thermodynamic study of advanced absorption heat transformer I. Single and two stage configurations with heat exchangers. Heat Recovery Systems and CHP 14, 173-183. [ Links ]
Shou-Shing, H., Chihng-Tsung, L. y Anthony, C.K. (1987).Thermal analysis of the performances of helical-type roughened double-pipe heat exchangers. Applied Energy 26, 67-73. [ Links ]
Singh, S.K., Kumar, R. y Mohanty, B. (2001). Heat transfer during condensation of steam over a vertical grid of horizontal integral-fin copper tubes. Applied Thermal Engineering 21, 717-730. [ Links ]