SciELO - Scientific Electronic Library Online

 
vol.12 número3Estudio del nejayote como medio de crecimiento de probióticos y producción de bacteriocinasEstablecimiento de cultivos de células en suspensión de Prosopis laevigata (Humb. & Bonpl. ex willd) M.C. Johnst para determinar el efecto del zinc en la absorción y acumulación de plomo índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.12 no.3 Ciudad de México dic. 2013

 

Biotecnología

 

Fungal laccases: induction and production

 

Lacasas fungales: inducción y producción

 

B. Bertrand, F. Martínez-Morales and M. R. Trejo-Hernández*

 

Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos. Av. Universidad No. 1001, Col. Chamilpa, C.P. 62209 Cuernavaca Morelos, México. * Corresponding author. E-mail: mtrejo@uaem.mx Tel. 52-777 3297057; Fax: 52-777 3297030.

 

Recibido 9 de Mayo de 2013
Aceptado 2 de Julio de 2013

 

Abstract

Fungal laceases are phenol oxidases that have been extensiveiy studied due to their relevance in diverse industrial applications including paper whitening, color reduction, elimination of phenolic compounds in wine, detoxification of polluted environments, revaluation of industrial wastes and water treatment. The principal difficulties in the use of these enzymes on an industrial scale are the cost of production and limitations on operation conditions (low stability and low catalytic activity). Over the last few decades, a variety of rtrategies have been evaluated to increase the productivity and improve the biochemical properties of these enzymes. The identification of inducers and the mechanisms by which gene expression is regulated is crucial for efforts to increase laccase production in fungi. Laccase gene transcription is regulated by various carbon and nitrogen sources, the presence of metal ions, the addition of diverse aromatic compounds related to lignin or its derivatives (phenolic and/or non-phenolic), and even the presence of other microorgamsms. Although abundant information is available about the biochemical properties and kinetic parameters of laccases, it is difficult to compare different laccases due to the diversity of laccase producing strains, isoforms, laccase substrates, inducers and operating conditions. This review discusses the literature on the induction and production of fungal laccases.

Keywords: laccase isoforms, induction, laccase regulation, laccase production.

 

Resumen

Las lacasas fúngicas son oxidasas fenólicas ampliamente estudiadas por su relevancia en diversas aplicaciones industriales, incluyendo el blanqueo de papel, reducción de color, eliminación de compuestos fenólicos en el vino, la biorremediación de ambientes contaminados, en la revalorización de residuos industriales y el tratamiento de aguas residuales. Las dificultades en el uso de lacasas a escala industrial son el costo de la producción y las limitaciones en las condiciones de operación (baja es tabilidad y actividad catalítica). En la última decada, se han evaluado diferentes estrategias que permiten un aumento de la productividad y la mejora de sus propiedades bioquímicas. Por ello, la identificación de los inductores y de los mecanismos implicados en la regulación de la expresión génica es crucial para el aumento de la producción de lacasa en los hongos. La transcripción de genes de lacasa está regulada por diferentes fuentes de carbono y nitrógeno, la adición de compuestos fenólicos y no fenólicos, la presencia de iones metálicos, y la interacción con otros organismos. Aunque existe información acerca de las propiedades bioquímicas y parámetros cinéticos de las lacasas, es difícil compararlos debido a la diversidad de cepas, número de isoformas, sustratos e inductores y condiciones de operación utilizadas. En esta revisión, se discuten los aspectos generales de la inducción y producción de lacasas fúngicas.

Palabras clave: isoformas de lacasa, inducción, regulación, producción.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

Baldrian, P. (2006). Fungal laccases-occurrence and properties. FEMS Microbiology Reviews 30, 215-242.         [ Links ]

Bakkiyaraj, S., Aravindan, R., Arrivukkarasan, S. and Viruthagiri, T. (2013). Enhanced laccase production by Trametes hirusta using wheat bran under submerged fermentation. International Journal of Chemical Technology Research 5, 1224-1238.         [ Links ]

Benson, A. D., Karsch-Mizrachi, I., Clark, K., Lipman, D. J., Ostell, J. and Sayers, E. W. (2012). GenBank. Nucleic Acid Research 40, D 48-D 53.         [ Links ]

Bertrand, B. (2010). Aislamiento y caracterización bioquímica de una lacasa inducida de Trametes versicolor. Tesis de Licenciatura. Facultad de Ciencias Biológicas (FCB) Universidad del Estado de Morelos (UAEM).         [ Links ]

Bertrand, B., Martínez-Morales, F., Tinoco, R., Rojas-Trejo, S., Serrano-Carreón, L. and Trejo-Hernández, M. R. (2013). Induction of laccases in Trametes versicolor by aqueous wood extracts. World Journal of Microbiology and Biotechnology DOI 0.1007/s11274-013-1420-3.         [ Links ]

Bezalel, L. H. and Cerniglia, C.E. (1996). Mineralization of polycyclic aromatic hydrocarbons by White Rot Fungus Pleurotus ostreatus. Applied and Environmental Microbiology 62, 292-295.         [ Links ]

Bollag, M-J. and Leonowicz, A. (1984). Comparative studies of extracellular fungal laccases. Applied and Environmental Microbiology 48, 849-854.         [ Links ]

Bonnen, A. M., Anton, L. H. and Orth, A.B. (1994). Lignin-Degrading Enzymes of the Commercial Button Mushroom. Agaricus bisporus. Applied and Environmental Microbiology 60, 960-965.         [ Links ]

Bourbonnais, R., Paice, M. G., Reid, I.D., Lanthier, P. and Yaguchi, M. (1995). Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2, 2'-azinobis (3-ethylbenzthiazoline-6-sulfonate) in kraft lignin de-polymerization. Applied and Environmental Microbiology 61, 1867-1880.         [ Links ]

Bouws, H., Wattenberg, A. and Zorn, H. (2008). Fungal secretomes-nature's toolbox for biotechnology. Applied Microbiology and Biotechnology 80, 381-388.         [ Links ]

Casas, N., Blanquez, P., Vincent,T. and Sarra, M. (2013). Laccase production by Trametes versicolor under limited-growth conditions using dyes as inducers. Environmental Technology 34, 1-4, 113-119.         [ Links ]

Castanera, R., Pérez, G., Omarini, A., Alfaro, M., Pisabarro, A. G., Faraco, V., Amore, A. and Ramírez, L. (2012). Transcriptional and enzymatic profiling of Pleurotus ostreatus laccase genes in submerged and solid state fermentation cultures. Applied and Environmental Microbiology 78, 4037-4045.         [ Links ]

Collins, P. J. and Dobson, A. D. W. (1997). Regulation of laccase gene transcription in Trametes versicolor. Applied and Environmental Microbiology 63, 3444-3450.         [ Links ]

Conesa, A., Punt, P. J., Luijk, N. V. and Hondel, V. D. C. (2001). The secretion pathway in filamentous fungi: A biotechnological view. Fungal Genetics and Biology 33, 155-171.         [ Links ]

Díaz, R., Alonso S., Sanchez, C., Tomasini, A., Bibbins-Martínez, M., Díaz-Godinez, G. (2011a). Characterization of growth and laccases activity of several strains of Pleurotus ostreatus in submerged fermentation. BioResources 6, 282-290.         [ Links ]

Díaz, R., Sánchez, C., Bibbins-Martínez, M.D., Díaz-Godínez, G. (2011b). Effect of medium pH on laccase zymogram patterns produced by Pleurotus ostreatus in submerged fermentation. African Journal of Microbiology Research 5, 2720-2723.         [ Links ]

Elisashvili, V., Kachlishvili, E., Khardziani, T. and Agathos, S. N. (2010). Effect of aromatic compounds on the production of laccase and manganese peroxidase by white-rot basidiomycetes. Journal of Industrial Microbiology and Biotechnology 37, 1091-1096.         [ Links ]

Faraco, V., Giardina, P. and Sannia, G. (2003). Metal-responsive elements in Pleurotus ostreatus laccase gene promoters. Microbiology 149, 2155-62.         [ Links ]

Flores, C., Casasanero, R., Trejo-Hernández, M.R., Galindo, E. and Serrano-Carreón, L. (2010) Production of laccases by Pleurotus ostreatus in submerged fermentation in co-culture with Trichoderma viride. Journal of Applied Microbiology 108, 810-817.         [ Links ]

Flores, C., Vidal, C., Trejo-Hernández, M.R., Galindo, E. and Serrano-Carreón, L. (2009) Selection of Trichoderma strains capable of increasing laccase production by Pleurotus ostreatus and Agaricus bisporus in dual cultures. Journal of Applied Microbiology 106, 249-257.         [ Links ]

Fonseca, M. I., Shimizu, E., Zapata, P. D. and Villalba, L. L. (2010). Copper inducing effect on laccase production of white rot fungi native from Misiones (Argentina). Enzyme and Microbial Technology 46, 534-539.         [ Links ]

Freeman, C. J., Nayar, G. P., Begley, P. T. and Villafranca, J. J. (1993). Stoichiometry and spectroscopic indentity of copper centers in phenoxazinone synthase. Biochemistry 32, 4826-4830.         [ Links ]

Fujihiro, S., Higuchi, R., Hisamatsu, S. and Sonoki, S. (2009). Metabolism of hydroxylated PCB congeners by cloned laccase isoforms. Applied Microbiology and Biotechnology 82, 853-860.         [ Links ]

Gavel, Y. and Von, H. G. (1990). Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein Engineering. Protein Engineering 3, 433- 42.         [ Links ]

Gómez, J., Pazos, M., Rodríguez Couto, S. and Sanromán M. A. (2005). Chestnut shell and barley bran as potential substrates for laccase production by Coriolopsis rigida under solid-state conditions. Journal of Food Engineering 68, 315-319.         [ Links ]

Goudopoulou, A., Krimitzas, A. T. and Typas, M.A. (2010). Differential gene expression of ligninolytic enzymes in Pleurotus ostreatus grown on olive oil mill wastewater. Applied Microbiology and Biotechnology 88, 541-551.         [ Links ]

Hatvani, N., Kredics, L., Antal, Z. and Meícs, I. (2002). Changes in activity of extracellular enzymes in dual cultures of Lentinula edodes and mycoparasitic Trichoderma strains. Journal of Applied Microbiology 92, 415-423.         [ Links ]

Hattaka, A. (1994). Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiology Reviews 13, 125-135.         [ Links ]

Ikehata, K., Buchanan, I. D. and Smith, D. W. (2004). Recent developments in the production of extracellular fungal peroxidases and laccases for waste treatment. Journal of Environmental Engineering and Science 3, 1-19.         [ Links ]

Imran, M., Asad, M.J., Hadri, S. H. and Mehmood, S. (2012). Production and industrial applications of laccase enzyme. Journal of Cell and Molecular Biology 10, 1-11.         [ Links ]

Kilaru, S., Hoegger, P. and Kues, U. (2006). The laccase multi-gene family in Coprinopsis cinerea; it has seventeen different members that divide into two distinct subfamilies. Current Genomics 50, 45-60.         [ Links ]

Kirk, T. K. and Farell, R. L. (1987). Enzymatic "combustion": The microbial degradation of lignin. Annual Review of Microbiology 41, 465-501.         [ Links ]

Klonowska, A., Le Petit, J. and Tron, T. (2001). Enhancement of minor laccases production in the basidiomycete Marasmius quercophilus C30. FEMS Microbiology Letters 200, 25-30.         [ Links ]

Kumar, S. and Mishra, A. (2011). Optimization of laccase production from WRF-1 on groundnut shell and cyanobacterial biomass: By application of Box-Behnken experimental design. Journal of Microbiology and Biotechnology Resources 1, 33-53.         [ Links ]

Kunamneni, A., Plou, J. F., Ballesteros, A. and Alcalde, M. (2008). Laccases and their Applications: A patent review. Recent patents on Biotechnology 2, 10-24.         [ Links ]

Larsson, S., Cassland, P. and Jonsson, L. J. (2001). Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Applied and Environmental Microbiology 67, 1163-1170.         [ Links ]

López-Pérez, M., Loera O., Guerrero-Olazarán, M., Viader-Salvadó, J.M., Gallegos-López, J., Fernández, F.J., Favela-Torres, E., Viniegra-González, G. (2010). Cell growth and Trametes versicolor laccase production in transformed Pichia pastoris cultured by solid-state or submerged fermentations. Journal of Chemical Technology and Biotechnology 85, 435-440.         [ Links ]

Lorenzo, M., Moldes, D. and Sanromán, M. A. (2006). Effect of heavy metals on the production of several laccase isoenzymes by Trametes versicolor and on their ability to decolourise dyes. Chemosphere 63, 912-917.         [ Links ]

Lu, X. and Ding, S. (2010). Effect of Cu2+, Mn2+ and aromatic compounds on the production of laccase isoforms by Coprinus comatus. Mycoscience 51, 68-74.         [ Links ]

Lundell, T. K., Makela, M. R. and Hilden, K. (2010). Lignin-modifying enzymes in filamentous basidiomycetes-ecological, functional and phylogenetic review. Journal of Basic Microbiology 50, 5-20.         [ Links ]

Lyashenko, A. V., Zhukhlistova, N. E., Gabdoulkhakov, A. G., Zhukova, Y. N., Voelter, W., Zaitsev, V. N., Bento, I., Stepanova, E. V., Kachalova, G. S., Koroleva, O. V., Cherkashyn, E. A., Tishkov, V. I., Lamzin, V. S., Schirwitz, K., Morgunova, E. Y., Betzel, C., Lindley, P. F. and Mikhailov, A. M. (2006). Purification, crystallization and preliminary X-ray study of the fungal laccase from Cerrena maxima. Structural Biology and Crystallization Communications 62, 954-957.         [ Links ]

Mansur, M., Suárez, T. and González, A. E. (1998). Differential Gene Expression in the Laccase Gene Family from Basidiomycete I-62 (CECT 20197). Applied and Environmental Microbiology 64, 771-774.         [ Links ]

Marques De Souza, C. G., Tychanowicz, G. K., Farani De Souza, D. and Peralta, R. M. (2004). Production of laccase isoforms by Pleurotus pulmonarius in response to presence ofphenolic and aromatic compounds. Journal of Basic Microbiology 44, 129-136.         [ Links ]

Mathur, G., Mathur, A., Sharma, B.M. and Chauhan, R.S. (2013). Enhanced production of laccase from Coriolus sp. using Plackett-Burman design. Journal of Pharmacy Research 6, 151-154.         [ Links ]

Mayer, A.M. (1986). Polyphenol oxidases in plants-recent progress. Phytochemistry 26, 11-20.         [ Links ]

Mayolo-Deloisa, K., Machín-Ramírez, C., Rito-Palomares, M. and Trejo-Hernández, M.R. (2011). Oxidation of polycyclic aromatic hydrocarbons using partially purified laccase from residual compost of Agaricus bisporus. Chemical Engineering and Technology 34, 1368-1372.         [ Links ]

Messerschmidt, A., Rossi, A., Ladenstein, R., Huber, R., Bolognesi, M., Gatti, G., Marchesini, A., Petruzzelli, R. and Finazziagro, A. (1989) X-ray crystal structure of the blue oxidase ascorbate oxidase from zucchini-analysis of the polypeptide fold and a model of the copper sites and ligands. Journal of Molecular Biology 206, 513-529.         [ Links ]

Mishra, A., Kumar, S. and Kumar, S. (2008). Application of Box-Behnken experimental design for optimization of laccase production by Coriolus versicolor MTCC138 in solid-state fermentation. Journal of Scientific and Industrial Research 66, 1098-1107.         [ Links ]

Missall, T. A., Moran, J.M Corbett, J. A. and Lodge, J K. (2005). Distinct stress responses of two functional laccases in Cryptococcus neoformans are revealed in the absence of the thiolspecific antioxidant Tsa1. Eukaryotic Cell 4, 202-208.         [ Links ]

Moldes, D., Gallego, P.P., Rodríguez-Couto, S. and Sanromaín, A (2003). Grape seeds: the best lignocellulosic waste to produce laccase by solid state cultures of Trametes hirsuta. Biotechnology Letters 25, 491-495.         [ Links ]

Moldes, D., Lorenzo, M. and Sanromaín, M. A. (2004). Different proportions of laccase isoenzymes produced by submerged cultures of Trametes versicolor grown on lignocellulosic wastes. Biotechnology Letters 26, 327-330.         [ Links ]

Nandal, P., Ravella, S. R. and Kuhad, R. C. (2013). Laccase production by Coriolopsis caperata RCK2011: Optimization under solid state fermentation by Taguchi DOE methodology. Scientific Reports 3, 1386.         [ Links ]

Necochea, R. A., Valderrama, B., Sandoval, D. S., Mallol-Folch, L. J., Duhalt-Vázquez, R. and Iturriaga, G. (2005). Phylogenetic and biochemical characterization of a recombinant laccase from Trametes versicolor. FEMS Microbiology Letters 244, 235- 241.         [ Links ]

Neifar, M., Kamoun, A., Jaouani, A., Ellouze-Ghorbel, R. and Ellouze-Chaabouni, S. (2011). Application of asymetrical and Hoke designs for optimization of laccase production by the white-rot fungus Fomes fomentarius in solid-state fermentation. Enzyme Research, doi.org/10.4061/2011/368525.         [ Links ]

Nityanand, C. and Desai, S. S. (2006). Microbial Laccases and their Applications: A Review. Asian Journal of Biotechnology 3, 98-124.         [ Links ]

Nyanhongo, G. S., Gomesa, B. J., Gubitzc, G. M., Zvauyab, G. R., Readd, J. and Steiner, W. (2002). Decolorization of textile dyes by laccases from a newly isolated strain of Trametes modesta. Water Resources 36, 1449-1456.         [ Links ]

Osma, J. F., Toca-Herrera, J. L. and Rodríguez-Couto, S. (2010). Review Article Uses of Laccases in the Food Industry. Enzyme Research Volume, doi 10.4061/2010/918761.         [ Links ]

Palmieri, G., Giardina, P., Bianco, C., Fontanella, B. and Sannia, G. (2000). Copper Induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Applied and Environmental Microbiology 66, 920-924.         [ Links ]

Pedersen, G. and Schmidt, M. (1992). International patent Novo Nordisk A/S No. WO9218687.         [ Links ]

Periasamy, R. and Palvannan, T. (2010). Optimization of laccase production by Pleurotus ostreatus IMI 395545 using the Taguchi DOE methodology. Journal of Basic Microbiology 50, 54856.         [ Links ]

Piscitelli, A., Giardina, P., Lettera, V., Pezzella, C., Sannia, G. and Faraco, V. (2011). Induction and Transcriptional regulation of laccases in fungi. Current Genomics 12, 104-112.         [ Links ]

Poojary, H. and Mugeraya G. (2012). Laccase production by Phellinus noxius hpF17: optimization of submerged culture conditions by Response Surface Methodology. Research in Biotechnology 3, 9-20.         [ Links ]

Risdianto, H., Suhardi, S. H., Setiadi, T. and Kokugan, T. (2010). The influence of temperature on laccase production in solid state fermentation by using white rot fungus Marasmius sp. The 1st international seminar on fundamental and application ISFA ChE 2010 of Chemical Engineering.         [ Links ]

Riva, S. (2006). Laccases: blue enzymes for green chemistry. Trends in Biotechnology 24, 219-226.         [ Links ]

Rodríguez-Couto, S., Gundín, M., Lorenzo, M. and Sanromán, M. A. (2002). Screening of supports and inducers for laccase production by Trametes versicolor in semi-solid-state conditions. Process Biochemistry 38, 249-255.         [ Links ]

Rodríguez-Rincón, F., Suarez, A., Lucas, M., Larrondo, L.F., De la Rubia, T., Polaina, J. and Martínez, J. (2010). Molecular and structural modeling of the Phanerochaete flavido-alba extracellular laccase reveals its ferroxidase structure. Archives of Microbiology 192, 883-892.         [ Links ]

Saraiva, J. A., Tavares, A. P. and Xavier, A. M. (2012). Effect of the inducers veratryl alcohol, xylidine, and ligninosulphonates on activity and thermal stability and inactivation kinetics of laccase from Trametes versicolor. Applied Biochemical and Biotechnology 167, 685-93.         [ Links ]

Savoie, J. M., Mata, G. and Billette, C. (1998). Extracellular laccase production during hyphal interactions between Trichoderma sp. and shiitake, Lentinula edodes. Applied Microbiology and Biotechnology 49, 589-593.         [ Links ]

Savoie, J. M. and Mata, G. (1999). The antagonistic action of Trichoderma sp. hyphae to Lentinula edodes hyphae changes lignocellulolytic activities during cultivation in wheatstraw. World Journal of Microbiologyand Biotechnology 15, 369-373.         [ Links ]

Scholosser, D., Grey, R. and Fritsche, W. (1997). Patterns of ligninolytic enzymes in T. versicolor. Distribution of extra-and intracellular enzyme activities during cultivation on glucose, wheat straw and beech wood. Applied Microbiology and Biotechnology 47, 412-418.         [ Links ]

Schückel, J., Matura, A., Van Pee, K. H. (2011). One-copper laccase-related enzyme from Marasmius sp.: purification, characterization and bleaching of textile dyes. Enzyme Microbiology and Technology 48, 278-84.         [ Links ]

Shah, V. and Nerud, F. (2002). Lignin degrading system of white-rot fungi and its exploitation for dye decolorization. Canadian Journal of Microbiology 48, 857-870.         [ Links ]

Sharma K, K., Shrivastava, B., Sastry, V. R., Sehgal, N and Kuhad, R.C. (2013). Middle-redox potential laccase from Ganoderma sp.: its application in improvement of feed for monogastric animals. Scientific Reports 3,1299.         [ Links ]

Sridhar, S., Chinnathambi, V., Arumugam, P. and Suresh, K. P. (2012). Extracellular laccase enzyme production by Rigidoporous sp. Using the Placket-Burman statistical design, spectral analysis and response surface methodology-based optimization of laccase-catalyzed decolorization of acid blue 133-a prototype texile azo dye. Journal of Agriculture and Environmental Sciences 12, 1617-1624.         [ Links ]

Struhl, K. (1999). Fundamentally Different Logic of Gene Regulation in Eukaryotes and Prokaryotes. Cell 98, 1-4.         [ Links ]

Taylor, A. B., Stoj, C. S., Ziegler, L., Kosman, D. J. and Hart, P. J. (2005). The copper-iron connection in biology: structure of the metallooxidase Fet3p. Proceedings of the National Academy of Sciences USA 102, 15459-15464.         [ Links ]

Thurston, C. (1994). The structure and function of fungal laccases. Microbiology 140, 19-26.         [ Links ]

Tinoco, R., Pickard, M. A and Vazquez-Duhalt, R. (2001). Kinetic differences of purified laccases from six Pleurotus ostreatus strains. Letters in Applied Microbiology 32, 331-336.         [ Links ]

Tinoco, R., Acevedo, A., Gallindo, E. and Serrano-Carreon, L. (2011). Increasing Pleurotus ostreatus laccase production culture medium optimization and copper/lignin synergistic induction. Journal of Industrial Microbiology and Biotechnology 38, 531-540.         [ Links ]

Tlecuitl-Beristain, S., Sánchez, C., Loera, O., Robson, G.D., Díaz-Godinez, G. (2008). Laccases of Pleurotus ostreatus observed at different phases of its growth in submerged fermentation: production of a novel laccase isoform. Mycological Research 112, 1080-1084.         [ Links ]

Trejo-Hernández, M.R., López-Munguía, A., Quintero-Ramírez, R. (2001). Residual compost of Agaricus bisporus as a source of crude laccase for enzymatic oxidation of phenolic compounds. Process Biochemistry 36, 83-87.         [ Links ]

Valderrama, B., Oliver, P., Medrano-Soto, A. and Vazquez-Duhalt, R. (2003). Evolutionary and structural diversity of fungal laccases. Antonie van Leeuwenhoek 84, 289-299.         [ Links ]

Villaseñor, F., Loera, O., Campero, A. and Viniegra-Gonzaílez, G. (2004) Oxidation of dibenzothiophene by laccase or hydrogen peroxide and deep desulfurization of diesel fuel by the latter. Fuel Processing Technology 86, 49-59.         [ Links ]

Xiao, Y. Z., Chen, Q., Hang, J., and Shi, Y. Y. (2004). Selective induction, purification and characterization of a laccase isozyme from the basidiomycete Trametes sp. AH28-2. Mycologia 96, 26-35.         [ Links ]

Yaver, D. S., Xu, F., Golightly, E. J., Brown, K. M., Brown, S. H., Rey, M. W., Schneider, P., Halkier, T., Mondorf, K and Dalb0ge, H. (1996). Purification, characterization, molecular cloning, and expression of two laccase genes from the white-rot basidiomycete Trametes villosa. Applied and Environmental Microbiology 62, 834-841.         [ Links ]

Yasmeen, O., Asgher, M., Sheikh, M. A and Nawaz, H. (2013). Optimization of ligninolytic enzyme production through response surface methodology. Bioresources 8, 944-968.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons