Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de ingeniería química
versión impresa ISSN 1665-2738
Rev. Mex. Ing. Quím vol.12 no.3 Ciudad de México dic. 2013
Biotecnología
Establishment of cell suspension cultures of Prosopis laevigata (Humb. & Bonpl. ex willd) M.C. Johnst to determine the effect of zinc on the uptake and accumulation of lead
Establecimiento de cultivos de células en suspensión de Prosopis laevigata (Humb. & Bonpl. ex willd) M.C. Johnst para determinar el efecto del zinc en la absorción y acumulación de plomo
A. Maldonado-Magaña1, J. Orozco-Villafuerte2, L. Buendía-González3*, M.E. Estrada-Zúñiga3, A. Bernabé-Antonio4 and F. Cruz-Sosa1
1 Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa. Av. San Rafael Atltxco No. 186, Col. Vicentina C.P. 09340, México D.F., México.
2 Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón esq. Paseo Tollocan s/n, Col. Residencial Colón, C.P. 50120 Toluca, Estado de México, México.
3 Facultad de Ciencias, Universidad Autónoma del Estado de México. Campus El Cerrillo, Piedras Blancas, Carretera Toluca-Ixtlahuaca km. 15.5, C.P. 50200, Toluca, Estado de México. * Corresponding author. E-mail: lety_sax@yahoo.com.mx Tel. +52-722-296-5556, Fax+52-722-296-5554.
4 Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001 Chamilpa 62210, Cuernavaca, Morelos, México.
Received July 15, 2013
Accepted October 144, 2013
Abstract
In vitro studies indicate that Prosopis laevigata can be considered a potential hyperaccumulator of lead. Likewise, lead uptake has been related to protein transporters for zinc. In this work presents a protocol for the establishment of cell suspension culture to determine the effect of zinc on the uptake and accumulation of lead. A bioassay with Pb2+/Zn2+ (0.0, 0.5, and 1.0 mM) was carried out on cell suspension cultures derived from callus induced in half-strength Murashige and Skoog (MS) medium added with 6.8 μM 2,4-dichlorophenoxyacetic acid (2,4-D) with 4.5 μM kinetin (KIN). Cells showed significant tolerance to growth (GR>60%) at all concentrations and combinations of Pb and Zn (0.0, 0.5 and 1.0 mM). When the Pb with or without Zn were added to the culture medium, the cells showed the highest accumulation efficiency for non-essential (lead) metal over essential (zinc) metal (BF values for Pb >> BF values for Zn; 2-33 times). Scanning electron micrographs evidenced the accumulation of Pb in the cells walls. These results provide insights about the tolerance and accumulation mechanisms of Pb occurring in P. laevigata.
Keywords: Prosopis laevigata, lead, zinc, competitive transport, bioaccumulation, phytoremediation.
Resumen
Estudios de cultivos in vitro, indican que Prosopis laevigata puede ser considerada como una especie potencialmente hiperacumuladora de plomo. En este trabajo se presenta un protocolo para el establecimiento de un cultivo de células en suspensión de P. laevigata, para determinar el efecto del Zn2+ sobre la absorción y acumulación de Pb2+. Se realizó un bioensayo con Pb2+/Zn2+ (0.0, 0.5, and 1.0 mM) en cultivos de celulas en suspension establecidos a partir de callos inducidos en cotiledones en medio Murashige & Skoog (MS) a la mitad de su concentración y suplementado con 2,4-D (6.8 μM) y KIN (4.5 μM). Las células presentaron un crecimiento relativo del 63-98% en todas las concentraciones y combinaciones de Pb y Zn (0.0, 0.5, 1.0 mM). Respecto a la acumulación, cuando el Pb fue adicionado al medio con o sin Zn, las células mostraron mayor eficiencia de acumulación para el metal no esencial (Pb) sobre el metal esencial (Zn) (valores de BF para Pb >> valores de BF para zinc; 2-33 veces). Imágenes de las células observadas con microscopía electrónica de barrido evidencian la acumulación del plomo en la pared celular. Estos resultados proporcionan información sobre los mecanismos de tolerancia y acumulación de plomo que se llevan a cabo en Prosopis laevigata.
Palabras clave: Prosopis laevigata, plomo, zinc, transporte competitivo, bioacumulación, fitorremediación.
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgements
The authors wish to thank the Programa para el Mejoramiento del Profesorado for the partial financing of this project through grant PROMEP/103.5/12/3510. Also, author AM-M thanks the Consejo Nacional de Ciencia y Tecnología (CONACyT) for the scholarship received.
References
Audet, P. and Charest, C. (2007). Heavy metal phytoremediation from a meta-analytical perspective. Environmental Pollution 147, 231-237. [ Links ]
Azooz, M.M., Youssef, M.M. and Al-Omair, M.A. (2011). Comparative evaluation of zinc and lead and their synergistic effects on growth and some physiological responses of Hassawi okra (Hibiscus esculentus) seedlings. American Journal of Plant Physiology 6, 269-282. [ Links ]
Baker, A.J.M. (1987). Metal tolerance. New Phytologist 106, 93-111. [ Links ]
Bovelli, R., Schiff, S. and Bennici, A. (2001). Callogenesis and organogenesis in species and different varieties of the genus Amaranthus. Informatore Botanico Italiano 33, 63-66. [ Links ]
Bozzola, J.J. and Russell, L.D. (1999). Electron Microscopy: principles and techniques for biologists. Pp. 16-47. Jones and Bartlett Publishers, England. [ Links ]
Buendía-González, L., Orozco-Villafuerte, J., Cruz-Sosa, F., Barrera-Díaz, C.E. and Vernon-Carter, E.J. (2010a). Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresource Technology 101, 5862-5867. [ Links ]
Buendía-González, L., Orozco-Villafuerte, J., Cruz-Sosa, F., Chávez-Ávila, V.M. and Vernon-Carter, E.J. (2007). Clonal propagation of mesquite tree (Prosopis laevigata Humb. & Bonpl. exWilld. M.C. Johnston). I. Via cotyledonary nodes. In vitro Cellular and Developmental Biology-Plant 43, 260-266. [ Links ]
Buendía-González, L., Orozco-Villafuerte, J., Estrada-Zúñiga, M.E., Barrera Díaz, C.E., Vernon-Carter, E.J. and Cruz-Sosa, F. (2010). in vitro lead and nickel accumulation in mesquite (Prosopis laevigata) seedlings. Revista Mexicana de Ingeniería Química 9, 1-9. [ Links ]
Burbulis, N. and Blinstrubiene, A. (2011). Genotypic and exogenous factors affecting linseed (Linumusitatissimum L.) anther culture. Journal of Food Agriculture and Environment 9, 364-367. [ Links ]
Calabrese, E.J., Bachmann, K.A., Bailer A.J., Bolger, P.M., Borak, J., Cai, L., Cedergreen, N., Cherian, M.G., Chiueh, C.C. and Clarkson, T.W. (2007) Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. Toxicology and Applied Pharmacology 222, 122-128. [ Links ]
Capataz-Tafur, J., Hernández-Sánchez, A.M., Rodríguez-Monroy, M., Trejo-Tapia, G. and Sepúlveda-Jiménez, G. (2010). Sucrose induces arabinogalactan protein secretion by Beta vulgaris L. cell suspension cultures. Acta Physiologiae Plantarum 32, 757-764. [ Links ]
Couselo, J.L., Corredoira, E, Vieitez, A.M. and Ballester, A. (2012) Plant tissue culture of fast-growing trees for phytoremediation research. Methods in Molecular Biology 877, 247-63. [ Links ]
Doran, P.M. (2009). Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnology and Bioengineering 103, 60-76. [ Links ]
Geebelen, W., Vangronsveld, J., Adriano, D.C., Van Poucke, L.C. and Clijsters, H. (2002). Effects of Pb-EDTA and EDTA on oxidative stress reactions and mineral uptake in Phaseolus vulgaris. Physiologia Plantarum 115, 377-384. [ Links ]
He, P.P., Lv, X.Z. and Wang, G.Y. (2004). Effects of Se and Zn supplementation on the antagonism against Pb and Cd in vegetables. Environment International 30, 167-172. [ Links ]
Hu, R., Sun, K., Su, X., Pan, Y.X., Zhang, Y.F. and Wang, X.P. (2012). Physiological responses and tolerance mechanisms to Pb in two xerophils: Salsola passerine Bunge and Chenopodium album L. Journal of Hazardous Materials 205-206, 131-138. [ Links ]
Islam, E., Liu, D., Li, T., Yang, X., Jin, X., Khan, M.A., Mahmood, Q., Hayat, Y. and Imtiaz, M. (2011). Effect of Pb toxicity on the growth and physiology of two ecotypes of Elsholtzia argyi and its alleviation by Zn. Environmental Toxicology 26,403-416. [ Links ]
Izquierdo, J.F., Cunill, F., Tejero, J., Iborra, M. and Fiteí, C. (2004). Cinética de las reacciones químicas. Ediciones Universitat de Barcelona, España. [ Links ]
Jiang, W. and Liu, D. (2010). Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biology 10, 40. [ Links ]
Klein, M.A., Sekimoto, H., Milner, M.J. and Kochian, L.V. (2008). Investigation of heavy metal hyperaccumulation at the cellular level: development and characterization of Thlaspi caerulescens suspension cell lines. Plant Physiology 147, 2006-2016. [ Links ]
Liu, D. and Kottke, I. (2003). Subcellular localization of chromium and nickel in root cells of Allium cepa by EELS and ESI. Cell Biology and Toxicology 19, 299-311. [ Links ]
Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15, 473-497. [ Links ]
Muschitz, A., Faugeron, C. and Morvan, H. (2009). Response of cultured tomato cells subjected to excess zinc: role of cell wall in zinc compartmentation. Acta Physiologiae Plantarum 31, 1197-1204 [ Links ]
Nandwani, D. and Ramawat, K.G. (1992). High frequency plantlets regeneration from seedling explants of Prosopis tamarugo. Plant Cell Tissue and Organ Culture 29, 173-178. [ Links ]
Nandwani, D. and Ramawat, K.G. (1991). Callus culture and plantlets formation from nodal explants of Prosopis juliflora (Swartz) DC. Indian Journal of Experimental Biology 29, 523-527. [ Links ]
Peer, W.A., Baxter, I.R., Richards, E.L., Freeman, J.L. and Murphy, A.S. (2006) Phytoremediation and hyperaccumulator plants. In: Molecular Biology of Metal Homeostasis and Detoxification. Topics in Current Genetics Vol. 14, (M.J. Tamas and E. Martinoia, eds.), Pp. 299-340. Springer-Verlag, Berlin. [ Links ]
Reid, R. and Hayes, J. (2003). Mechanisms and control of nutrient uptake in plants. International Review of Cytology 229, 73-114. [ Links ]
Sarma, H. (2001). Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. Journal of Environmental Science and Technology 4, 118-138. [ Links ]
Sharma, D.C., Chatterjee, C. and Sharma, C.P. (1995). Chromium accumulation and its effects on wheat (Triticum aestivum L. cv. HD 2204) metabolism. Plant Science 111, 145-151. [ Links ]
Trejo-Espino, J.L., Rodríguez-Monroy, M., Vernon-Carter, E.J. and Cruz-Sosa, F. (2011). Establishment and characterization of Prosopis laevigata (Humb. & Bonpl.exWilld) M.C. Johnst. cell suspension culture: a biotechnology approach for mesquite gum production. Acta Physiologiae Plantarum 33, 1687-1695. [ Links ]
Tsuji, N., Hirayanagi, N., Okada, M., Miyasaka, H., Hirata, K., Zenk, M.H. and Miyamoto, K. (2002). Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis. Biochememical and Biophysical Research Communications 293, 653-659. [ Links ]
Zheng, L., Peer, T., Seybold, V. and Lütz-Meindl, U. (2012). Pb-induced ultrastructural alterations and subcellular localization of Pb in two species of Lespedeza by TEM-coupled electron energy loss spectroscopy. Environmental and Experimental Botany 77, 196-206. [ Links ]