Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de ingeniería química
versión impresa ISSN 1665-2738
Rev. Mex. Ing. Quím vol.13 no.2 Ciudad de México ago. 2014
Artículos de investigación
Isolation and characterization of a novel strain, Bacillus sp KJ629314, with a high potential to aerobically degrade diesel
Aislamiento y caracterización de una nueva cepa, Bacillus sp KJ629314, con un alto potencial en la degradación aeróbica de diésel
S. Cisneros-de La Cueva, M.A. Martínez-Prado*, J.A. Rojas-Contreras, H. Medrano-Roldán, and M.A. Murillo-Martínez
Technological Institute of Durango, Felipe Pescador Blvd. # 1830 East. Nueva Vizcaya, Zip Code 34080, Durango, Dgo., Mexico. *Corresponding author. E-mail: adriana.martinez@orst.edu.
Received February 2, 2014.
Accepted April 2, 2014.
Abstract
In this research, a diesel-degrading bacterium (strain KJ629314) was isolated from a mining soil contaminated with total petroleum hydrocarbons (TPH) and properly characterized using the polymerase chain reaction (PCR) molecular technique. The 16s rDNA sequence analysis allowed to identify KJ629314 as a strain of Bacillus sp. Experimental phase was conducted to assess the aerobic biodegradation of diesel; to determine the removal effciency and the corresponding microbial growth; diesel was used as a substrate - electron donor - carbon source; and oxygen (via aeration) as the electron acceptor. Tests were conducted in microcosms with sterile sand with nutrients according to the Nitrogen:Phosphorus ratio of 15:1 at different diesel concentrations (10,000; 20,000; 30,000; 40,000 and 50,000 mg/kg soil). Results showed that the strain of Bacillus sp KJ629314 has a high potential in the biodegradation of diesel at the evaluated concentrations, and it was demonstrated that the removal efficiency was greater at low concentrations of diesel obtaining higher values for the microbial growth and diesel biodegradation rate constants. These promising results support the fact that Bacillus sp KJ629314 may be used as a novel biological resource to develop a bioprocess for the bioremediation of diesel-contaminated soil.
Keywords: aerobic degradation, Bacillus sp KJ629314, bioremediation, contaminated soils, mining industry, TPH.
Resumen
En esta investigación, una bacteria degradadora de diésel (cepa KJ629314) fue aislada de un suelo minero contaminado con hidrocarburos totales de petróleo (HTP) y debidamente caracterizada utilizando la técnica molecular de la reacción en cadena de la polimerasa (RCP). El análisis de la secuencia de 16s rDNA permitió identificar KJ629314 como una cepa de Bacillus sp. La fase experimental se llevó a cabo para evaluar la biodegradación aeróbica del diésel; para determinar la eficiencia de remoción y el crecimiento microbiano correspondiente; el diésel se utilizó como sustrato - donador de electrones - fuente de carbono, y el oxígeno (a través de la aireación) como aceptor de electrones. Las pruebas se realizaron en microcosmos empleando arena estéril con nutrientes de acuerdo con la relación Nitrógeno:Fósforo de 15:1 a diferentes concentraciones de diésel (10,000; 20,000; 30,000; 40,000 y 50,000 mg/kg de suelo). Los resultados mostraron que la cepa de Bacillus sp KJ629314 tiene un alto potencial en la biodegradación del diésel en las concentraciones evaluadas, y se demostró que la eficiencia de degradación fue mayor a bajas concentraciones de diésel; obteniéndose valores más altos para el crecimiento microbiano así como para las constantes de velocidad de degradación. Estos prometedores resultados apoyan el hecho de que el Bacillus sp KJ629314 puede ser utilizado como un recurso biológico novedoso para desarrollar un bioproceso para la biorremediación de suelos contaminados con diésel.
Palabras clave: Bacillus sp KJ629314, biorremediación, degradación aeróbica, HTP, industria minera, suelos contaminados.
DESCARGAR ARTÍCULO EN FORMATO PDF
References
Abbassi, E. and Shquirat, W. (2008). Kinetics of indigenous isolated bacteria used for ex-situ bioremediation of petroleum contaminated soil. Water Air Soil Pollution 192, 221-226. [ Links ]
Admon, S., Green, M., and Avnimelech, Y. (2001). Biodegradation kinetics of hydrocarbons in soil during land treatment of oily sludge. Bioremediation Journal 5, 193-209. [ Links ]
Alexander, M. (1999). Biodegradation and Bioremediation. Second Edition, Academic Press San. Diego California, 15-45. [ Links ]
Ahari, S.H., Jafari, B., and Hanifehzadeh, M. (2012). Isolation and molecular study of indigenous Bacillus strains from oil storage facilities in Ahar. Annals of Biological Research 3, 3084-3088. [ Links ]
Annweiler, E., Richnow, H.H., Antranikian G., Hebenbrock, S., Garms, C., Franke, S., Francke, W., and Michaelis, W. (2000). Naphthalene Degradation and Incorporation of Naphthalene derived Carbon into Biomass by the thermophile Bacillus thermoleovorans. Applied and Environmental Microbiology 66, 518-523 [ Links ]
Atlas, R.M. and Cerniglia, C.E. (1995). Bioremediation of petroleum pollutants: Diversity and environmental aspects of hydrocarbon biodegradation. Bioscience 45, 332-338. [ Links ]
Bento, F.M., Camargo, F.A.O., Okeke, B.C., and Frankenberger W.T. (2005). Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresource Technology 96, 1049-1055. [ Links ]
Bossert, I. and Bartha, R. (1984). The fate of petroleum in soil ecosystem. In: Petroleum Microbiology. R. M. Atlas (Ed.). Macmillan, New York, 435-473. [ Links ]
Cerniglia, C.E. (1992). Biodegradation of Polycyclic Aromatic Hydrocarbons. Biodegradation 3, 351-368. [ Links ]
Drobniewski, F.A. (1993). Bacillus cereus and related species. Clinical Microbiology Reviews 6, 324-338. [ Links ]
Farinazleen, M.G., Raja, A.R., Abu, S., and Mahiran, B. (2004). Biodegradation of hydrocarbons in soil by microbial consortium. International Biodeterioration and Biodegradation 54, 61-67. [ Links ]
Gallego, J.L., Loredo J., Llamas J.F., Vázquez F., and Sánchez J. (2001). Bioremediation of diesel contaminated soils: evaluation of potential in situ techniques by study of bacterial degradation. Biodegradation 12, 325-335. [ Links ]
Ganesh, A. and Lin, J. (2009). Diesel degradation and biosurfactant production by Gram-positive isolates. African Journal of Biotechnology 8, 5847-5854. [ Links ]
García, F.J., Pérez, R., Escolano, O., Rubio, A., Gimeno, A., Fernandez, M.D., Carbonell, G., Perucha, C., and Laguna, J. (2012). Remediation trials for hydrocarbon-contaminated sludge from a soil washing process: Evaluation of bioremediation technologies. Journal of Hazardous Materials 199-200, 262-271. [ Links ]
Ghazali, F., Rahaman, R., Salleh, A., and Basri, M. (2004). Biodegradation of hydrocarbons in soil by microbial consortium. International Biodeterioration and Biodegradation 54, 61-67. [ Links ]
Hoffman, C.S. and Winston, F. (1987). A ten minute preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57, 267-272. [ Links ]
Hong, J.H., Kim, J., Choi, O.K., Cho, K.S., and Ryu, H.W. (2005). Characterization of a diesel-degrading bacterium, Pseudomonas aeruginosa IU5, isolated from oil-contaminated soil in Korea. World Journal of Microbiology & Biotechnology 21, 381-384. DOI 10.1007/s11274-004-3630-1. [ Links ]
Huesemann, M.H. (1995). Predictive model for estimating the extent of petroleum hydrocarbon biodegradation in contaminated soils. Journal of Environmental science and Technology 29, 7-18. [ Links ]
Kazuga, C. and Aitken, M.D. (2000). Products from the incomplete metabolism of pyrene by polycyclic aromatic hydrocarbon degrading bacteria. Applied and Environmental Microbiology 66, 1917-1922. [ Links ]
Kebria, Y., Khodadadi A., Ganjidoust H., Badkoubi, A., and Amoozegar M.A. (2009). Isolation and characterization of a novel native Bacillus strain capable of degrading diesel fuel. International Journal of Environmental science and Technology 6, 435-442. [ Links ]
Leahy, J.G. and Colwell, R.R. (1990). Microbial degradation of hydrocarbons in the environment. Microbiological Reviews 54, 305-315. [ Links ]
Makula, R. and Finnerty, W.R. (1972). Microbial assimilation of hydrocarbons I. Fatty acids derived from normal alkanes. Journal of Bacteriology 95, 2102-2107. [ Links ]
Marchal, R., Penet, S., Solano-Serena, F., and Vandecasteele, J.P. (2003). Gasoline and Diesel Oil Biodegradation. Oil & Gas Science and Technology 58, 441-448. [ Links ]
Márquez-Rocha, F., Hernández-Rodríguez V., and Lamela M. (2001). Biodegradation of diesel oil in soil by a microbial consortium. Water, Air, and Soil Pollution 128, 313-320. [ Links ]
Martínez-Prado, A., Pérez-López, M.E., Pinto-Espinoza, J., Gurrola-Nevárez, B.A., and Osorio-Rodríguez, A.L. (2011a). Biorremediación de suelo contaminado con hidrocarburos empleando lodos residuales como fuente alterna de nutrientes. Revista Internacional de Contaminación Ambiental 27, 241-252. [ Links ]
Martínez-Prado, M.A., Unzueta-Medina, J., and Pérez-López M.E. (2014). Electrobioremediation as a hybrid technology to treat soil contaminated with total petroleum hydrocarbons. Revista Mexicana de Ingeniería Química 13, 113-127. [ Links ]
Martínez-Prado, M.A. and Williamson K.J. (2011). Biodegradation of methyl tert-butyl ether (MTBE) and its breakdown products by propane and iso-pentane grown Mycobacterium vaccae and Graphium sp.: Cometabolism, inhibition, kinetics and modeling. Vol 1, First Edition. Lap Lambert Academic Publishing Gmbh & Co. Kg. [ Links ]
Maughana, H. and Van der, A.G. (2011). Bacillus taxonomy in the genomic era finds phenotypes to be essential though often misleading. Infection, Genetics and Evolution 11, 789-797. [ Links ]
Mrozik, A., Piotrowska, Z., and Labuzek, S. (2003). Bacterial Degradation and Bioremediation of Polycyclic Aromatic Hydrocarbons. Polish Journal of Environmental Studies 12, 15-25. [ Links ]
Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., and Naidu, R. (2011). Bioremediation approaches for organic pollutants: A critical perspective. Environment International 37, 1362-1375. [ Links ]
Nisha, P., Nayana, M., and Varghese V. (2013). Degradation studies on diesel oil using bacterial consortium isolated from oil polluted soil. Advanced Biotechnology 13, 6-14. [ Links ]
Nwaogu, L., Onyeze, G., and Nwabueze, R. (2008). Degradation of diesel oil in a polluted soil using Bacillus subtilis. African Journal of Biotechnology 7, 1939-1943. [ Links ]
Panda, S.K., Kar R.N., and Panda C.R. (2013). Isolation and identification of petroleum hydrocarbon degrading microorganisms from oil contaminated environment. International Journal of Environmental Sciences 3, 1314-1321. [ Links ]
Relman, D.A. (1993). Universal bacterial 16S rRNA amplification and sequencing. American Society of Microbiology. Washington, DC, 489-495. [ Links ]
Richard, J.Y. and Vogel, T.M. (1999). Characterization of a soil bacterial consortium capable of degrading diesel fuel. International Biodeterioration and Biodegradation 44, 93-100. DOI:10.1016/S0964-8305(99)00062-1 [ Links ]
Ruiz-Marín, A., Zavala-Loria, J.C., Canedo-López, Y., and Cordova-Quiroz, A.V. (2013). Tropical bacteria isolated fromoil-contaminated mangrove soil: bioremediation by natural attenuation and bioaugmentation. Revista Mexicana de Ingeniería Química 12, 553-560. [ Links ]
Sadouk, Z., Tazerouti A., and Hacene, H. (2008). Biodegradation of diesel oil and production of fatty acid esters by a newly isolated Pseudomonas citronellolis KHA. World Journal of Microbiology and Biotechnology 25, 65-70. DOI:10.1007/s11274-008-9863-7. [ Links ]
Salemi, M. and Vandamme, A. (2003). The phylogenetic handbook. A practical approach to DNA and Protein Phylogeny. Cambridge University Press. [ Links ]
SEMARNAT (2003). Norma Oficial Mexicana NOM-138-SEMARNAT/SS-2003. Límites máximos permisibles de hidrocarburos en suelos y las especificaciones para su caracterización y remediación. Diario oficial de la Federación. 29 de Marzo de 2005. [ Links ]
Singh, C. and Lin, J. (2010). Bioaugmentation efficiency of diesel degradation by Bacillus pumilus JLB and Acinetobacter calcoaceticus LT1 in contaminated soils. African Journal of Biotechnology 9, 6881-6888. [ Links ]
Strauss, J.M., du Plessis, C.A., and Riedel, K.H. (2000). Empirical model for biofiltration of toluene. Journal of Environmental Engineering 126, 644-648. [ Links ]
Shukor, M.Y., Hassan, N.A.A., Jusoh, A.Z., Perumal, N., Shamaan, N.A., MacCormack, W.P., and Syed, M.A. (2009). Isolation and characterization of a Pseudomonas diesel-degrading strain from Antarctica. Journal of Environmental Biology 30, 1-6. [ Links ]
Toledo, F.L., Calvo, C., Rodelas, B., and Gonzalez-Lopez, J. (2006). Selection and identification of bacteria isolated from waste crude oil with polycyclic aromatic hydrocarbons removal capacities. Systematic and Applied Microbiology 29, 244-252. DOI:10.1016/j.procbio.2005.03.032. [ Links ]
USEPA (2003). United States Environmental Protection Agency. Aerobic biodegradation of oily wastes: A field guidance book for federal on-scene coordinators. Region 6 South Central Response and Prevention Branch. [ Links ]
Van Hamme, J.D., Singh, A., and Ward, O.P. (2003). Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews 67, 503-549. [ Links ]
Vecchioli, G.I., Del Panno, M.T., and Painceira, M.T. (1990). Use of selected autochthonous soil bacteria to enhance degradation of hydrocarbons in soil. Environmental Pollution 67, 249-258. [ Links ]
Vidali, M. (2001). Bioremediation: An overview. Pure and Applied Chemistry 73, 1163-1172. [ Links ]
Viñas, M., Grifoli, M., Sabaté, J., and Solanas, A.M. (2002). Biodegradation of a crude oil by three microbial consortia of different origins and metabolic capabilities. Journal of Industrial Microbiology and Biotechnology 28, 252-260. [ Links ]
Viñas, M., Jordi, S., Espuny, M.J., and Solanas, A.M. (2005). Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote contaminated soil. Applied and Environmental Microbiology 71, 7008-7018. [ Links ]
Wan, N., Hwang, E.Y., Park, J.S., and Choi, J.Y. (2002). Bioremediation of diesel-contaminated soil with composting. Environmental Pollution 119, 23-31. [ Links ]
Wutzler, T. and Reichstein, M. (2013). Priming and substrate quality interactions in soil organic matter models. Biogeosciences 10, 2089-2103. [ Links ]
Zanaroli, G., Di Toro, S., Todaro, D., Varese, G., Bertolotto, A., and Fava, F. (2010). Characterization of two diesel fuel degrading microbial consortia enriched from a non-acclimated, complex source of microorganisms. Microbial Cell Factories 9, 1-13. [ Links ]