Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de ingeniería química
versión impresa ISSN 1665-2738
Rev. Mex. Ing. Quím vol.13 no.2 Ciudad de México ago. 2014
Artículos regulares/Ingeniería de alimentos
Changes in large-deformation properties during dough fermentation by Lactobacillus strains and their relationship with microstructure
Cambios en las propiedades de deformación de la masa durante la fermentación por Lactobacillus y su relación con la microestructura
J. Colín-Orozco1,4, J. Chanona-Pérez2, M. de J. Perea-Flores3 and R. Pedroza-Islas4*
1 Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada. Unidad Legaria, Calzada. Legaria No. 694 Col. Irrigación, Delegación Miguel Hidalgo, México D.F., C.P. 11500.
2 Escuela Nacional de Ciencias Biológicas. Instituto Politécnico Nacional. Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n. Col. Santo Tomás, Delegación Miguel Hidalgo México, D. F., C.P. 11340.
3 Centro de Nanociencias y Micro y Nanotecnologías. Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Luis Enrique Erro s/n. Col., Zacatenco. Gustavo A. Madero, México. D.F.
4 Universidad Iberoamericana. Prolongación Paseo de la Reforma 880, Lomas de Santa Fé, México Distrito Federal CP. 01219. *Corresponding author. E-mail: ruth.pedroza@ibero.mx.
Received February 4, 2014.
Accepted May 19, 2014.
Abstract
Assessment of the microstructural changes that occur in wheat doughs during fermentation due to the Lactobacillus type (Lactobacillus plantarum, Lactobacillus brevis and Lactobacillus sanfranciscensis), and the changes associated to mechanical properties. To dough with a dough yield (DY) of 150 were added 50 mL of inoculum (109 CFUmL-1) and fermented at 35°C for 24 h (76% RH). The uniaxial extensibility of the dough was determined at 0, 6, 12, 18 and 24 h of fermentation using a texture analyzer equipped with a Kieffer rig. The microstructure was observed by means of a Scanning Electron Microscope (SEM), and the images were analyzed to determine the fractal dimension (FDS DBC) and Entropy (Ent). In all cases, the maximum extensibility (Em) and the maximum resistance (Rm) of the doughs decreased with the progress of fermentation. Lb. plantarum and Lb. sanfranciscensis reduced Em by 4-0 and 42%, respectively, while DY decreased by more than 85%. Fermentation increased the structural complexity of trie dough by raising its FDS DBC and Ent values, with differences depending on the type of bacteria. These results provide adequate criteria for the selection of bacteria for the development of sourdoughs and for understanding the structural and mechanical changes that occur during fermentation.
Keywords: lactobacilli, sourdough, mechanical properties, fractal dimension, microstructure.
Resumen
Se evaluaron los cambios microestructurales que ocurren en la masa de trigo durante la fermentación por efecto del tipo de lactobacilo (Lactobacillus plantarum, Lactobacillus brevis y Lactobacillus sanfranciscensis), así como los asociados a las propiedades mecánicas. Las masas preparadas con un RM (rendimiento de masa) de 150, fueron adicionadas con 50 mL de inóculo (109 UFC mL-1) y se fermentaron a 35°C/24 h (HR 76%). Se determinó la extensibilidad uniaxial de las masas a las 0, 6, 12, 18 y 24 h de fermentación usando un texturómetro equipado con el gancho de Kieffer. Las imágenes de microscopía electrónica de barrido fueron analizadas para determinar la dimensión fractal. En todos los casos, la extensibilidad máxima (Em) y la resistencia máxima de las masas (Rm), disminuyó por la fermentacion. Lb. plantarum y Lb. sanfranciscensis redujeron la Em en 40 y 42% respectivamente, mientras que la Rm en todos los casos se redujo en más de 85%. La fermentación incrementó la complejidad estructural aumentando los valores de FDS DBC y Ent, diferenciado por el tipo de bacteria. Estos resultados proveen de criterios adecuados para la selección de bacterias en la elaboración de masas agrias y para el entendimiento de los cambios estructurales y mecánicos.
Palabras clave: lactobacilos, masas agrias, propiedades mecánicas, dimensión fractal, microestructura.
DESCARGAR ARTÍCULO EN FORMATO PDF
References
Arendt, E.K., Ryan, A.M.L., and Dal Bello, F. (2007). Impact of sourdough on the texture of bread. Food Microbiology 24, 165-174. [ Links ]
Arzate-Vázquez, I., Chanona-Pérez, J.J., Calderón-Domínguez, G., Terres-Rojas, E., Garibay-Febles, V., Martínez-Rivas, A., Gutiérrez-López, G.F. (2012). Microstructural characterization of chitosan and alginate films by microscopy techniques and texture image analysis. Carbohydrate Polymers 87, 289-299. [ Links ]
Barletta, H.J., and Barbosa, O.G.V. (1993). Fractal analysis to characterize ruggedness changes in tapped agglomerated food powders. Journal of Food Science 58, 1030-1035. [ Links ]
Blaszczak, V., Sadowska, J., Rosell, C.M., and Fornal, J.Z. (2004). Structural changes in the wheat dough and bread with the addition of alpha-amylases. European Food Research Technology 219, 348-354. [ Links ]
Bleux, W., Roels, S.P., and Delcour, J.A. (1997). On the presence and activities of proteolytic enzymes in vital wheat gluten. Journal of Cereal Science 26, 183-193. [ Links ]
Calderón-Domínguez, G., Neyra-Guevara, M., Farrera-Rebollo, R., Arana-Errasquín, R., and Mora-Escobedo, R. (2003). Structural and farinographic changes during mixing of a yeast sweet dough. Nahrung-Food 47, 312-319. [ Links ]
Cebeci, A., and Gürakan, C. (2003). Properties of potential probiotic Lactobacillus plantarum strains. Food Microbiology 20, 511-518. [ Links ]
Chanona, P.J.J., Alamilla B.L., Farrera R.R.R., Quevedo R., Aguilera J. M., and Gutiérrez, L.G.F. (2003). Description of the convective air-drying of a food model by means of the fractal theory. Food Science and Technology International 7, 207-213. [ Links ]
Curiel, J.A., Coda, R., Limitone, A., Katina, K., Raulio, M., Giuliani, G., Rizzello, C.G., and Gobbetti, M. (2014). Manufacture and characterization of pasta made with wheat flour rendered gluten-free using fungal proteases and selected sourdough lactic acid bacteria. Journal of Cereal Science 59, 79-87. [ Links ]
De Angelis, M., Rizzello, C.G., Fasano, A., Clemente, M.G, Simone, C., Silano, M., Vincenzi, M., de Losito, I., and Gobbetti, M. (2005). VSL# 3 probiotic preparation has the capacity to hydrolyze gliadin polypeptides responsible for celiac sprue probiotics and gluten intolerance. Biochimica et Biophysica Acta Molecular Basis of Disease 1762, 80-93. [ Links ]
De Vuyst, L., and Vancanneyt, M. (2007). Biodiversity and identification of sourdough lactic acid bacteria. Food Microbiology 24, 120-127. [ Links ]
Decock, P., and Cappelle, S. (2005). Bread technology and sourdough technology. Trends in Food Science and Technology 16, 113-120. [ Links ]
Di Cagno, R., De Angelis, M., Alfonsi, G., De Vincenzi, M., Silano, M., Vicentini, O., and Gobbetti, M. (2005). Pasta made from Durum wheat semolina fermented with selected Lactobacilli as a tool for a potential decrease of the gluten intolerance. Journal of Agricultural and Food Chemistry 53,4393-4402. [ Links ]
Di Cagno, R., De Angelis, M., Lavermicocca, P., De Vicenzi, M., Faccia, M., and Gobetti, M. (2002). Proteolysis by sourdough lactic acid bacteria: Effects on wheat flour protein fractions and gliadin peptides evolved in human cereal intolerant. Applied and Environmental Microbiology 68, 623-633. [ Links ]
Gänzle, M., Vermeulen, N., and Vogel, R. (2007). Carbohydrate, peptide and lipid metabolism of lactic acid bacteria in sourdough. Food Microbiology 24, 128-138 [ Links ]
Gänzle, M. Loponen, J., and Gobetti, M. (2008). Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends in Food Science and Technology 19, 513-521. [ Links ]
Gänzle, M. (2014). Enzymatic and bacterial conversions during sourdough ferementation. Food Microbiology 37, 2-10. [ Links ]
Gerez, C.L., Rolla, G.C., and de Valdez, G.F. (2006). Gluten breakdown by lactobacilli and pediococci strains isolated from sourdough. Letters in Applied Microbiology 42, 459-464. [ Links ]
Gobbetti, M., Rizzello, C.G, Di Cagno, R., and De Angelis, M. (2007). Sourdough lactobacilli and celiac disease. Food Microbiology 24 3rd International Symposium on Sourdough, 187-196. [ Links ]
Gonzales-Barron, U., and Butler, F. (2008). Fractal texture analysis of bread crumb digital images. European Food Research Technology 226, 721-729. [ Links ]
Haralick, R.M., Shanmugam, K. and Dinstein, I. (1973). Textural features for image classification. IEEE transactions on systems man and cybernetics SMC-3, 610-621. [ Links ]
Holtmeier, W., and Caspary, W.F. (2006). Celiac Disease. Orphanet Journal of Rare Diseases 1:3. [ Links ]
Katina, K. (2005). Sourdough: A tool for the improved flavour, texture and shelf life of wheat bread. Ph. D. Thesis. VTT Biotechnology. Faculty of Agriculture and Forestry of the University of Helsinki, Sweden. [ Links ]
Kerdpiboon, S., Devahastin, S., and Kerr, W.L. (2007). Comparative fractal characterization of physical changes of different food products during drying. Journal of Food Engineering 83, 570-580. [ Links ]
Kim, H.J., Morita, N., Lee, S.H., and Moon, K.D. (2003). Scanning electron microscopic observations of dough and bread supplemented with Gastrodia elata Blume powder. Food Research International 36, 387-397. [ Links ]
Lattanzi, A., Minervini, F., Di Cagno, R., Diviccaro, A., Antonielli, L., Cardinali, G., Cappelle, S., De Angelis, M., and Gobbetti, M. (2013). The lactic acid bacteria and yeast microbiota of eighteen sourdoughs used for the manufacture of traditional Italian sweet leavened baked goods. International Journal of Food Microbiology 163, 71-79. [ Links ]
Latif-Amet, A., Ertüzün, A., and Erçil, A. (2000). An efficient method for texture defect detection: sub-band domain co-occurrence matrices. Image and Vision Computing 18, 543-553. [ Links ]
López-Guel, E.C., Lozano-Bautista, F., Mora-Escobedo, R., Farrera-Rebollo, R.R., Chanona-Perez, J., Gutiérrez-López, G.F., and Calderón-Domínguez, G. (2012). Effect of soybean 7S protein fractions, obtained from germinated and nongerminated seeds on dough rheological properties and bread quality. Food and Bioprocess Technology 5, 226-234. [ Links ]
Loponen, J., Sontag-Strohm, T., Venalainen, J., and Salovaara H. (2007). Prolamin hydrolysis in wheat sourdoughs with differing proteolytic activities. Journal of Agricultural and Food Chemistry 55, 978-984. [ Links ]
Neysens, P., and de Vuyst, L. (2005). Kinetics and modellig of sourdough lactic acid bacteria. Trends in Food and Technology 16, 95-103. [ Links ]
Paramithiotis, S., Chouliaras, Y., Tsakalidou, E., and Kalantzopoulus, G. (2005). Application of selected starter cultures for the production of wheat sourdough using a traditional three-stage procedure. Process Biochemistry 40, 2813-2819. [ Links ]
Peighambardoust, S.H., Dadpour, M.R., and Dokouhaki, M. (2010). Application of epifluorescence light microscopy (EFLM) to study the microstructure of wheat dough: a comparison with confocal scanning laser microscopy (CSLM) technique. Journal of Cereal Science 51, 21-27. [ Links ]
Peleg, M., and Normand, M.D. (1985). Characterization of the ruggedness of instant coffee particle shape by natural fractals. Journal of Food Science 50, 829-831. [ Links ]
Pérez-Nieto, A., Chanona-Pérez, J., Farrera-Rebollo, R., Gutiérrez-López, G., and Calderón-Domínguez, G. (2010). Image analysis of structural changes in dough during baking. LWT - Food Science and Technology 43, 535-543. [ Links ]
Perni, S., Andrew, P.W., and Shama, G. (2005). Estimating the maximum growth rate from microbial growth curves: definition is everything. Food Microbiology 22, 491-495. [ Links ]
Prabhasankar, P., Manohar, R.S., and Gowda, L.R. (2002). Physicochemical and biochemical characterisation of selected wheat cultivars and their correlation to chapati making quality. European Food Research and Technology 214, 131-137. [ Links ]
Quevedo, R., López-G.C., Aguilera, J.M., and Cadoche, L. (2002). Description of food surfaces and microstructural changes using fractal image Texture. Journal of Food Engineering 53, 361-371 [ Links ]
Quevedo, R., Mendoza, F., Aguilera, J.M., Chanona, J., Gutiérrez-López, G. (2008). Determination of senescent spotting in banana (Musa Cavendish) using fractal texture Fourier image. Journal of Food Engineering 84, 509-515. [ Links ]
Rehman S., Paterson, A., and Piggit, J.R. (2006). Flavour in sourdough breads: A review. Trends in Food Science and Technology 17, 557-566. [ Links ]
Rizzello, C.G., De Angelis, M., Di Cagno, R., Camarca, A., Silano, M., Losito, I., De Vincenzi, M., De Bari, M.D., Palmisano, F., Maurano, F., Gianfrani, C., and Gobbetti, M. (2007). Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing: new perspectives for celiac disease. Applied and Environmental Microbiology 73, 4499-4507. [ Links ]
Rodríguez-Huezo, M.E., Lobato-Calleros, C., Reyes-Ocampo, J.G., Sandoval-Castilla, O., Pérez-Alonso, C., and Pimentel, D.J. (2011). Survivability of entrapped Lactobacillus rhamnosus in liquid-and-gel core alginate beads during storage and simulated gastrointestinal conditions. Revista Mexicana de Ingeniería Química 10, 353-361. [ Links ]
Rojas, J.A., Rosell, M.C., Benedito de Barber, C., Pérez-Munuera, I., and Lluch, M.A. (2000). The baking process of wheat rolls followed by cryo-scanning electron microscopy. European Food Research Technology 212, 57-63. [ Links ]
Schober, T.J, Dockery, P., and Arendt, E.K. (2003). Model studies for wheat sourdough systems using gluten, lactate buffer and sodium chloride. European Food Research Technology 217, 235-243. [ Links ]
Suchy, J., Lukow, O.M., and Ingelin, M.E. (2000). Dough microextensibility method using a 2-g Mixograph and a texture analyzer. Cereal Chemistry 77, 39-43. [ Links ]
Takeda, K., Matsumura, Y., and Shimizu, M. (2001). Emulsifying and surface properties of wheat gluten under acidic conditions. Journal of Food Science 66, 393-399. [ Links ]
Thiele, C., Grassl, S., and Gänzle M. (2004). Gluten hydrolysis and depolimerization during sourdough fermentation. Journal of Agricultural and Food Chemistry 52, 1307-1314. [ Links ]
Tlapale-Valdivia, A.D., Chanona-Pérez, J.J., Mora-Escobedo, R., Farrera-Rebollo, R.R., Gutiérrez-López, G.F., and Calderón-Domínguez, G. (2010). Dough and crumb grain changes during mixing and fermentation and their relation with extension properties and bread quality of yeasted sweet dough. International Journal of Food Science and Technology 45, 530-539. [ Links ]
Unay, D., and Gosselin, B. (2002). Apple Defect Detection and Quality Classification with MLP-Neural Networks. Available from: www.tcts.fpms.ac.be/publications/papers/2002/prorisc02_dubg.pdf. Accessed: 3 December 2013. [ Links ]
Varriano-Marston E. (1977). Scanning electron microscopy. Food Technology, October, 32-36.
Vernocchi, P., Ndajijimana, M., Serrazanetti, D., Gianotti, A., Vallicelli, and M., Guerzoni, M.E. (2008). Influence of Starch addition and dough microstructure on fermentation aroma production by yeast and lactobacilli. Food Chemistry 108, 1217-1225. [ Links ]
Wen-Shiung, C., Shang-Yuan, Y., and Chih-Ming, H. (2003). Two algorithms to estimate fractal dimension of gray-level images. Optical Engineering 42, 2452-2464. [ Links ]
Wick, M., Vanhoutte, J.J., Adhemard, A., Turini, G., Lebeault, J.M. (2001). Automatic method for evaluating the activity of sourdough strains based on gas measurements. Applied Microbiology Biotechnology 55, 362-368. [ Links ]
Wieser, H. (1996). Relation between gliadin structure and coeliac toxicity. Acta Paediatrica s412, 3-9. [ Links ]
Woomer, P. (1994). Most Probable Number Counts. In: Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties (S.N. Mickelson, ed.), Pp. 60-78. Soil Society of America, Inc., USA. [ Links ]
Zotta, T., Piaino, P., Ricciardi A, McSweeney, P.L.H., and Parente, E. (2006). Proteolysis in model sourdough fermentations. Journal of Agricultural and Food Chemistry 54, 2567-2574. [ Links ]
Zwietering, M.H., Jongenburger, I., Rombouts, F.M. and Van't Riet, K. (1990). Modeling of the bacterial growth curve. Applied Environmental Microbiology 56, 1875-1881. [ Links ]