SciELO - Scientific Electronic Library Online

 
vol.13 número2Capacidad de calentamiento magnético de nanopartículas de sílica-ferrita de cobaltoIdentificación genética del bioánodo y biocátodo de una celda de electrolisis microbiana índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.13 no.2 Ciudad de México ago. 2014

 

Artículos regulares/Materiales

 

Caracterización estructural y textural de una haloisita colombiana

 

Structural and textural characterization of a colombian halloysite

 

A.M. Carrillo, C.M. Urruchurto, J.G. Carriazo1*, S. Moreno, R.A. Molina

 

Departamento de Química, Universidad Nacional de Colombia, Sede Bogotá. Ciudad Universitaria, Carrera 30, No 45-03, Bogotá, D. C. (Colombia). *Autor para la correspondencia. E-mail: jcarriazog@unal.edu.co.

 

Recibido 12 de Junio de 2013.
Aceptado 15 de Marzo de 2014.

 

Resumen

El presente trabajo muestra la caracterización de una arcilla natural con potencialidad para ser usada en la preparación de nuevos materiales de interés tecnológico. El mineral en estudio se analizó mediante fluorescencia de rayos X (FRX), difracción de rayos X (DRX), análisis térmico, microscopía electrónica (SEM y TEM) y espectroscopia IR, entre otras técnicas usadas. Los resultados indicaron que el material caracterizado es una arcilla tipo 1:1, mineralógicamente clasificado como meta-haloisita. Los análisis de fluorescencia (FRX) y difracción (DRX) mostraron los perfiles de composición y estructura de un mineral de gran interés científico y tecnológico debido a la ausencia de contaminantes en cantidades apreciables. El análisis por microscopía de transmisión (TEM) mostró la formación de nanotubos de 80 a 600 nm de longitud y la adsorción de nitrógeno indicó que el sólido es mesoporoso con área superficial de 43 m2/g.

Palabras clave: arcilla natural, mineral de arcilla, haloisita, nanotubos, nanotubos inorgánicos, soporte catalítico.

 

Abstract

This study reports the characterization of a natural clay with potential use for the preparation of new materials for technological applications. This material was analyzed using X-ray fluorescence (XRF), X-ray powder diffraction (XRD), thermal analysis, electron microscopy (SEM-TEM), and IR-spectroscopy among others. The results indicated that the studied mineral is a clay type 1:1, mineralogically classified as meta-halloysite. XRF and XRD showed composition and structure profiles of a scientifically and technologically valuable mineral due to the absence of contaminants in significant quantities. TEM analysis revealed halloysite nanotubes with 80 to 600 nm of length, and the nitrogen adsorption showed a mesoporous solid with specific surface area of 43 m2/g.

Keywords: natural clay, clay mineral, halloysite, nanotubes, inorganic nanotubes, catalytic support.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Referencias

Bates, T. F., Hildebrand, F. A. y Swineford, A. (1950). Morphology and structure of endellite and halloysite. The American Mineralogist 35, 463-484.         [ Links ]

Barrientos-Ramírez, S., Oca-Ramírez, G. M., Ramos-Fernández, E. V., Sepúlveda-Escribano, A., Pastor-Blas, M.M. y González-Montiel, A. (2011). Surface modification of natural halloysite clay nanotubes with aminosilanes. Application as catalyst supports in the atom transfer radical polymerization of methyl methacrylate. Applied Catalysis A 406, 22-33.         [ Links ]

Barrientos-Ramírez, S., Ramos-Fernández, E.V., Silvestre-Albero, J., Sepúlveda-Escribano, A., Pastor-Blas, M.M. y González-Montiel, A. (2009). Use of nanotubes of natural halloysite as catalyst support in the atom transfer radical polymerization of methyl methacrylate. Microporous and Mesoporous Materials 120, 132-140.         [ Links ]

Belver, C., Bañares-Muñoz, M.A. y Vicente, M.A. (2004). Fe-saponite pillared and impregnated catalysts I. Preparation and characterization. Applied Catalysis B 50, 101-112.         [ Links ]

Brigatti, M.F., Galan, E. y Theng, B.K.G. (2006). Structures and Mineralogy of Clay Minerals. En: Handbook of Clay Science. Developments in Clay Science 1. (F. Bergaya, B.K.G. Theng y G. Lagaly, eds.), Pp. 19-86. Elsevier.         [ Links ]

Cañizares, P., Valverde, J. L., Sun, K. M. R. y Molina, C. B. (1999). Synthesis and characterization of PILCs with single and mixed oxide pillars prepared from two different bentonites. A comparative study. Microporous and Mesoporous Materials 29, 267-281.         [ Links ]

Cheng, H., Yang, Y., Liu, Q., Zhang, J. y Frost, R. L. (2010). A spectroscopic comparison of selected Chinese kaolinite, coal bearing kaolinite and halloysite-A mid-infrared and near-infrared study. Spectrochimica Acta A 77, 856-861.         [ Links ]

Fan, H., Xie, K., Shangguan, J., Shen, F. y Li, C. (2007). Effect of Calcium Oxide Additive on the Performance of Iron Oxide Sorbent for High-Temperature Coal Gas Desulfurization. Journal of Natural Gas Chemistry 16, 404-408.         [ Links ]

Joussein, E., Petit, S. y Delvaux, B. (2007). Behavior of halloysite clay under formamide treatment. Applied Clay Science 35, 17-24.         [ Links ]

Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D. y Delvaux, B. (2005). Halloysite clay minerals: a review. Clay Minerals 40, 383-426.         [ Links ]

Lambrou, P. S. y Efstathiou, A. M. (2006). The effects of Fe on the oxygen storage and release properties of model Pd-Rh/CeO2-Al2O3 three-way catalyst. Journal of Catalysis 240, 182-193.         [ Links ]

Levis, S. R. y Deasy, P. B. (2002). Characterization of halloysite for use as a microtubular drug delivery system. International Journal of Pharmaceutics 243, 125-134.         [ Links ]

Li, R., He, Q., Hu, Z., Zhang, S., Zhang, L. y Chang, X. (2012). Highly selective solidphase extraction of trace Pd(II) by murexide functionalized halloysite nanotubes. Analytica Chimica Acta 713, 136-144.         [ Links ]

Long, R. Q. y Yang, R. T. (1999). Selective Catalytic Reduction of Nitrogen Oxides by Ammonia over Fe3+-Exchanged TiO2-Pillared Clay Catalysts. Journal of Catalysis 186, 254-268.         [ Links ]

Luo, P., Zhao, Y., Zhang, B., Liu, J., Yang, Y. y Liu, J. (2010). Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Research 44, 1489-1497.         [ Links ]

Lvov, Y.M., Shchukin, D.G., Mohwald, H. y Price, R.R. (2008). Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2, 814-820.         [ Links ]

Machado, G. S., Castro, K. A. D. F., Wypych, F. y Nakagaki, S. (2008). Immobilization of metalloporphyrins into nanotubes of natural halloysite toward selective catalysts for oxidation reactions. Journal of Molecular Catalysis A 283, 99-107.         [ Links ]

Marney, D.C.O., Russell, L.J., Wu D.Y., Nguyen, T., Cramm, D., Rigopoulos, N., Wright, N. y Greaves, M. (2008). The suitability of halloysite nanotubes as a fire retardant for nylon 6. Polymer Degradation and Stability 93, 1971-1978.         [ Links ]

Martinez, M. S., Ballbe, L. E. (1985). Método de diferenciacion de Caolinitas y Cloritas. Acta Geológica Hispánica 20, 245-255.         [ Links ]

Mermut, A. R. y Cano, A. F. (2001). Baseline studies of the clay minerals society source clays: chemical analyses of major elements. Clays and Clay Minerals 49, 381-386.         [ Links ]

Nicolini, K. P., Fukamachi, C. R. B., Wypych, F. y Mangrich, A. S. (2009). Dehydrated halloysite intercalated mechanochemically with urea: Thermal behavior and structural aspects. Journal of Colloid and Interface Science 338, 474-479.         [ Links ]

Oliveira, L. C. A., Rios, R. V. R. A., Fabris, J. D., Sapag, K., Garg, V. K. y Lago, R. M. (2003). Clay-iron oxide magnetic composites for the adsorption of contaminants in water. Applied Clay Science 22, 169-177.         [ Links ]

Ordóñez, S., Sastre, H. y Díez, F. V. (2001). Characterisation and deactivation studies of sulfided red mud used as catalyst for the hydrodechlorination of tetrachloroethylene. Applied Catalysis B29, 263-273.         [ Links ]

Pabst, W., Kuneš, K., Havrda, J. y Gregorová, E. (2000). A note on particle size analyses of kaolins and clays. Journal of the European Ceramic Society 20, 1429-1437.         [ Links ]

Pasbakhsh, P., Churchman, G. J., Keeling, J. L. (2013). Characterization of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Applied Clay Science 74, 47-57.         [ Links ]

Quincoces, C. E., Basaldella, E. I., De Vargas, S. P. y González, M. G. (2004). Ni/γ-Al2O3 catalyst from kaolinite for the dry reforming of methane. Materials Letters 58, 272-275.         [ Links ]

Rouquerol, F., Rouquerol, J. (1999). Adsorption by Power and Porous Solids, Academic Press, London.         [ Links ]

Shchukin, D.G., Lamaka, S.V., Yasakau, K.A., Zheludkevich, M.L., Ferreira, M.G.S. y Moehwald, H. (2008). Active anticorrosion coatings with halloysitenanocontainers. Journal of Physical Chemistry C112, 958-964.         [ Links ]

Thorez, J. (2003). Practical XRD analysis of clay minerals. Workshop. Universidad Nacional de Colombia, Bogotá         [ Links ].

Viseras, M.T., Aguzzi, C., Cerezo, P., Viseras, C. y Valenzuela, C. (2008). Equilibrium and kinetics of 5-aminosalicylic acid adsorption of halloysite. Microporous and Mesoporous Materials 108, 112-116.         [ Links ]

Wang, L., Chen, J., Ge, L., Zhu, Z. y Rudolph, V. (2011). Halloysite-Nanotube-Supported Ru Nanoparticles for Ammonia Catalytic Decomposition to Produce COx-Free Hydrogen. Energy and Fuels 25, 3408-3416.         [ Links ]

Xu, A., Yang, M., Yao, H, Du, H. y Sun, C. (2009). Rectorite as catalyst for wet air oxidation of phenol. Applied Clay Science 43, 435-438.         [ Links ]

Zhang, A.-B., Pan, L., Zhang, H.-Y., Liu, S.-T., Ye, Y., Xia, M.-S. y Chen, X.-G. (2012). Effects of acid treatment on the physico-chemical and pore characteristics of halloysite. Colloids and Surfaces A396, 182-188.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons