SciELO - Scientific Electronic Library Online

 
vol.13 número3Conservación del aceite de aguacate con campo eléctricoExtracción de lípidos de Tetraselmis suecica: proceso asistido por ultrasonido y solventes índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.13 no.3 Ciudad de México dic. 2014

 

Biotecnología

 

Fertigation of sweet sorghum (Sorghum bicolor L. Moench.) in laboratory and nursery assays with treated vinasses of hidrated ethanol of UASB reactor

 

Fertirrigación de sogro dulce (Sorghum bicolor L. Moench.) en laboratorio y ensayos en vivero con vinazas tratadas de etanol hidratado de un reactor UASB

 

J.O. Mijangos-Cortes1,2*, M. E. Gonzalez-Muñoz1,3, E.I. España-Gamboa1,3, J.A. Domínguez-Maldonado1,3 and L. Alzate-Gaviria1,3

 

1 Centro de Investigación Científica de Yucatán A. C.

2 Natural Resources Unit. *Corresponding author. E-mail: jmijangoscorts@yahoo.com.mx

3 Renewable Energy Unit; Calle 43 No. 130, Colonia Chuburná de Hidalgo, C.P. 97200, Mérida, Yucatán, México.

 

Received August 19, 2013.
Accepted December 31, 2013.

 

Abstract

Vinasse is used in crop fertigation indiscriminately, however, this wastewater generates serious environmental damage as the reduction in crop yield or even its death in the short-term and acidification, decreased oxygenation, increased organic load, accumulation of phenols in soil in the medium and long term. The aim of this study was the fertigation sweet sorghum (Sorghum bicolor L. Moench) in laboratory (bioassays germination) and growth in nursery treated with hydrated ethanol stillage from a UASB modified, in order to improve its chemical properties and use them to 50, 75% (diluted) and 100% of treated vinasse (TV50, TV75 and TV100 respectively). The raw vinasse (RV) had the lowest percentage of germination in seeds of sweet sorghum in laboratory tests (14% in 8 days) compared to the control treatment where 94% of germinated seeds. Growth of seedlings in the nursery with RV treatment was lower than in other treatments and after 13 days the plants completely stopped growth and died.

Keywords: energy crop, UASB treated vinasse, distillery wastewater management, soil fertility.

 

Resumen

Las vinazas se han utilizado en la fertirigación de cultivos de manera indiscriminada, sin embargo, estas aguas residuales generan daños graves al medio ambiente, desde la reducción en el rendimiento o muerte de los cultivos a corto plazo, así como la acidificación, disminución de la oxigenación, aumento de la carga orgánica, acumulación de fenoles en el suelo en el mediano y largo plazo. El objetivo de este estudio fue la fertirrigación de sorgo dulce (Sorgo bicolor L. Moench) en laboratorio (bioensayos de germinación) y crecimiento en vivero con vinazas tratadas de Etanol hidratado de un UASB modificado, con la finalidad de mejorar sus propiedades químicas y utilizarlas al 50, 75% (diluidas) y al 100 % de vinaza tratada (TV50, TV75 y TV100 respectivamente). La vinaza cruda (RV) presentó el porcentaje más bajo de germinación en las semillas de sorgo dulce en las pruebas de laboratorio (14% en 8 días) comparado con el tratamiento control donde germinó el 94% de las semillas. El crecimiento de las plántulas en el vivero con la vinaza cruda (RV) fue menor que en otros tratamientos, y después de 13 días las plantas detuvieron completamente su crecimiento y murieron.

Palabras clave: cultivos energéticos, vinasas tratadas UASM, manejo de aguas residuales de destilerías, fertilidad del suelo.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

The authors gratefully acknowledge the contribution of I.A.H. Daniel A. Leon Gomez for the technical assistance in the nursery. This research was partially financed by Fondo Sectorial CONACYT-CONAVI, Scientific Project: No. 101284.

 

References

Ahmad, S., Ahmad, R., Ashraf, M., Ashraf, M. and Waraich, E. (2009). Sunflower (Helianthus annus L.) response to drought stress at germination and seedling growth stages. Pakistan Journal of Botany 41, 647-654.         [ Links ]

Ali, M., Rajewski, J., Baenziger, P., Gill, K., Eskridge, K. and Dweikat, I. (2008). Assessment of genetic diversity and relationship among a collection of US sweet sorghum germplasm by SSR markers. Molecular Breeding 21, 497-509.         [ Links ]

Almodares, A. and Hadi, M. (2009). Production of bioethanol from sweet sorghum: A review. African Journal of Agricultural Research 4, 772-780.         [ Links ]

Bharagava, R. and Chandra, R. (2010). Effect of bacteria treated and untreated post-methanated distillery effluent (PMDE) on seed germination, seedling growth and amylase activity in Phaseolus mungo L. Journal of Hazardous Materials 180, 730-734.         [ Links ]

Bharagava, R., Chandra, R. and Rai, V. (2008). Phytoextraction of trace elements and physiological changes in Indian mustard plants (Brassica nigra L.) grown in post methanated distillery effluent (PMDE) irrigated soil. Bioresource Technology 99, 8316-8324.         [ Links ]

Cabello, A., Sandoval, A. and Carú, M. (2002). Efecto de los tratamientos pregerminativos y de las temperaturas de cultivo sobre la germinación de semillas de Talguenea quinquenervia (talguén). Ciencias Forestales 16, 11-18.         [ Links ]

Chandra, R., Bharagava, R., Yadava, S. and Mohan, D. (2009). Accumulation and distribution of toxic metals in wheat (Triticum aestivum L.) irrigated with distillery and tannery effluents. Journal of Hazardous Materials 162, 15141521.         [ Links ]

Chuck-Hernández, C., Pérez-Carrillo, E., Heredia-Olea, E. and Serna-Saldívar, S.O. (2011). Shorgum as a multifunctional crop for bioethanol production in Mexico: Technologies, advances and improvement opportunities. Revista Mexicana de Ingeniería Química 10, 529-549.         [ Links ]

Cirne, D., van der Zee, F., Fernández-Polanco, M. and Fernandez-Polanco, F. (2008). Control of sulphide during anaerobic treatment of S-containing wastewaters by adding limited amounts of oxygen or nitrate. Reviews of Environmental Science and Biotechnology 7, 93-105.         [ Links ]

Deshpande, A., Kamble, B., Shinde, R. and Gore, S. (2012). Effect of Primary Treated Biomethanated Spentwash on Soil Properties and Yield of Sunflower (Helianthus annuus L.) on Sodic Soil. Soil Science and Plant Analysis 43, 730-743.         [ Links ]

España-Gamboa, E., Mijangos-Cortés, J., Barahona-Pérez, L., Domínguez-Maldonado, J.A., Hernandez-Zárate, G. and Alzate-Gaviria, L. (2011). Vinasses: characterization and treatments. Waste Management and Research 29, 1235-1250.         [ Links ]

España-Gamboa, E., Mijangos-Cortés, J. O., Hernández-Zárate, G., Maldonado, J. A. and Alzate-Gaviria, L. (2012). Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor. Biotechnology for Biofuels 5, 82-90.         [ Links ]

Janhom, T., Wattanachira, S. and Pavasant, P. (2009). Characterization of brewery wastewater with spectrofluorometry analysis. Journal of Environmental Management 90, 1184-1190.         [ Links ]

Kadioglu, A. and Algur, O. (1990). The Effect of Vinasse on the Growth of Helianthus annuus and Pisum sativum: Part 1-The Effects on Some Enzymes and Chlorophyll and Protein Content. Environmental Pollution 67, 223-232.         [ Links ]

Kalaiselvi, P. and Mahimairaja, S. (2012). Effect of distillery spentwash on yield attributes and quality of groundnut crop. Journal of Scientific Research 7, 189-193.         [ Links ]

Kannan, A. and Upreti, R. (2008). Influence of distillery effluent on germination and growth of mung bean (Vigna radiata) seeds. Journal of Hazardous Materials 153, 609-615.         [ Links ]

Kaushik, A., Nisha, R., Jagjeeta, K. and Kaushik, C.P. (2005). Impact of long and short term irrigation of a sodic soil with distillery effluent in combination with bioamendments. Bioresource Technology 96, 1860-1866.         [ Links ]

Kranner, I. and Colville, L. (2011). Metals and seeds: Biochemical and molecular implications and their significance for seed germination. Environmental and Experimental Botany 72, 93-105.         [ Links ]

Lee, C., Hong, C., Kim, S., Schumacher, T. and Kim, P. (2011). Reduction of phosphorus release by liming from temporary flooded rice rotational system in greenhouse upland soil. Ecological Engineering 37, 1239-1243.         [ Links ]

McDonald, M., Vertucci and C., Roos, E. (1987). Seed Coat Regulation of Soybean Seed Imbibition. Crop Science 28, 987-992.         [ Links ]

McDowell, R., Mahieu, N., Brookes, P., Poulton, P. (2003). Mechanisms of phosphorus solubilisation in a limed soil as a function of pH. Chemosphere 51, 685-692.         [ Links ]

NOM-2000 Norma Oficial Mexicana, Especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. NOM-021-RECNAT-2000. Diario Oficial 31 de diciembre de 2002. México.         [ Links ]

Ometto, A., Roma, W. and Ortega, E. (2004). Emergy life cycle assessment of fuel ethanol in Brazil. In Ortega, E. and Ulgiati, S. (editors): Proceedings of IV Biennial International Workshop Advances in Energy Studies. Unicamp, Campinas, SP, Brazil. June 16-19. Pages 389-399.         [ Links ]

Pant, D. and Adholeya, A. (2007). Biological approaches for treatment of distillery wastewater: A review. Bioresource Technology 98, 2321-2334.         [ Links ]

Patil, S. and Sheelavantar, M. (2004). Effect of cultural practices on soil properties, moisture conservation and grain yield of winter sorghum (Sorghum bicolor L. Moench) in semi-arid tropics of India. Agricultural Water Management 64, 49-67.         [ Links ]

Rajkishore, S. and Vignesh, N. (2012). Distillery spentwash in the context of crop production -a review. The Bioscan 7, 369-375.         [ Links ]

Ramana, S., Biswas, A., Kundu, S., Saha, J. and Yadava, R. (2002 a). Effect of distillery effluent on seed germination in some vegetable crops. Bioresource Technology 82, 273-275.         [ Links ]

Ramana, S., Biswas, A. and Singh, A. (2002b). Effect of distillery effluents on some physiological aspects in maize. Bioresource Technology 84, 295-297.         [ Links ]

Ramana, S., Biswas, A., Singh, A. and Yadava, R. (2002c). Related efficacy of different distillery effluents on growth, nitrogen fixation and yield of groundnut. Bioresource Technology 81, 117-121.         [ Links ]

Sahai, R., Shukla, N., Jabeen, S. and Saxena, P. (1985). Pollution Effect of Distillery Waste on the Growth Behaviour of Phaseolus radiatus L. Environmental Pollution (Series A) 37, 245-253.         [ Links ]

Satyawali, Y. and Balakrishnan, M. (2008). Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: A review. Journal of Environmental Management 86, 481-497.         [ Links ]

Taiz, L. and Zeiger, E. (2006). Plant Physiology. Editorial Sinauer Associates Inc., USA.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons