Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de ingeniería química
versión impresa ISSN 1665-2738
Rev. Mex. Ing. Quím vol.14 no.1 Ciudad de México ene./abr. 2015
Biotecnología
Producción de trehalosa a partir de levaduras no-convencionales
Trehalosa production from non-conventional yeasts
J.C. González-Hernández1*, M.A. Alcántar-Covarrubias1 y C. Cortés-Rojo2
1 Laboratorio de Bioquímica del Departamento de Ing. Bioquímica del Instituto Tecnológico de Morelia, Ave. Tecnológico # 1500, Colonia Lomas de Santiaguito, C. P. 58120, Morelia, Michoacán, México. *Autor para la correspondencia. E-mail: jcgh1974@yahoo.com, Tel. (+52-433) 3121570. Ext. 231., Fax (+52-433) 3121570. Ext. 211.
2 Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3 Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, México.
Recibido 4 de Noviembre 2013
Aceptado 24 de Enero de 2014
Resumen
La trehalosa es un disacárido formado por dos moléculas de D-glucosa, cuya estructura y propiedades fisicoquímicas únicas le confieren gran estabilidad. Este carbohidrato se acumula en el citosol de las levaduras bajo condiciones de estrés abiótico debido a su efecto protector contra la desecación, altas temperaturas, congelación, alta salinidad y oxidación. Debido a estas propiedades, la trehalosa tiene importantes aplicaciones en la industria alimentaria, cosmética, farmacéutica y en la investigación. Se realizó un análisis comparativo de la producción de trehalosa en las levaduras no-convencionales Saccharomyces kluyveri, Candida shehatae y Candida guilliermondii, evaluando el efecto de dos temperaturas de crecimiento (28 y 34 °C y dos métodos de ruptura celular (mecánica con perlas de vidrio o térmica mediante ebullición). La tasa de crecimiento (celulas/mL) de las células cultivadas a 34 °C disminuyó en comparación con el crecimiento a 28 °C. S. kluyveri produjo la mayor cantidad de biomasa en comparación con las levaduras del genero Candida, C. shehatae fue la única levadura en la cual no se detectó producción de trehalosa bajo ninguna condición de temperatura. Se determinó que C. guilliermondii produce la mayor cantidad de trehalosa en relación a las otras dos especies de levaduras en base a la prueba de Tukey-Kramer.
Palabras clave: Candida shehatae, Candida guilliermondii, Saccharomyces kluyveri, temperatura, estrés.
Abstract
Trehalose is a disaccharide constituted by two molecules of D-glucose, whose unique structural and physicochemical properties are responsible for its high stability. This carbohydrate accumulates inside the cytosol of yeast during abiotic stress due to its protective effect against desiccation, high temperatures, freezing, high salinity and oxidation. For this reason, trehalose has important applications in food, cosmetic, pharmaceutical industries and research. In this study, it was performed a comparative analysis of trehalose production in non-conventional yeasts Saccharomyces kluyveri, Candida shehatae and Candida guilliermondii evaluating the effect of two growth temperatures (28 and 34°C) and two methods of cell breakage (mechanical or thermal disruption by bead beating or boiling, respectively). The growth rate (cells/mL) of the cells cultured at 34°C was lower in comparison with the growth at 28°C. S. kluyveri produced the higher amount of biomass in comparison with the yeasts from the Candida, C. shehatae was the only yeast in which no trehalose production was detected at any temperature. Based on Tukey-Kramer test, it was determined that C. guilliermondii yields the higher amount of trehalose in contrast to the two other species of yeast tested.
Key words: Candida shehatae, Candida guilliermondii, Saccharomyces kluyveri, temperature, stress.
DESCARGAR ARTÍCULO EN FORMATO PDF
Agradecimientos
Se agradecen los donativos parciales de la DGEST (870.08-P).
Referencias
Ansell, R., Granath. K., Hohmann. S., Thevelein, J.M. y Adler, L. (1997). The two isoenzymes for yeast NAD-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redor regulation. EMBO Journal 16, 2179-2187. [ Links ]
Albertyn, J., Hohmann, S. y Prior, B.A. (1994). Characterization of the osmotic stress response in Saccharomyces cerevisiae: osmotic stress and glucose repression regulate glycerol-3-phosphate dehydrogenase independently. Current Genetics 25, 12-18. [ Links ]
Becker, A., Schloder, P., Steele, J.E. y Wegener, G. (1996). The regulation of trehalose metabolism in insects. Experientia 52, 433-439. [ Links ]
Blazquez, M.A., Santos, E., Flores, C.L., Martínez-Zapater, J.M., Salinas, J. y Gancedo, C. (1998). Isolation and characterization of the Arabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase. Plant Journal 13, 685-689. [ Links ]
Borst-Pauwels, G.W. y Peters, P.H. (1977). Effect of the medium pH and the cell pH upon the kinetical parameters of phosphate uptake by yeast. Biochimica Biophysica et Acta 466, 488-495. [ Links ]
Brewster, J.L., de Valoir. T., Dwyer, N.D., Winter, E. y Gustin, M.C. (1993). An osmosensing signal transduction pathway in yeast. Science 259, 1760-1763. [ Links ]
Caprioli, M., Krabbe-Katholm, A., Melone, G., Ramøv, H., Ricci, C. y Santo, N. (2004). Trehalose in desiccated rotifers: a comparison between a bdelloid and a monogonont species. Comparative Biochemical Physiology and Molecular Integrative Physiology 139, 527-32. [ Links ]
Colaco, C., Pinder, S., Roser, B., Sen, S., y Thangavelu, M. (1992). Extraordinary stability of enzymes dried in trehalose: simplified molecular biology. Bio/Technology 10, 1007-1111. [ Links ]
Crowe, J., Crowe, L., y Chapman, D. (1984). Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223, 701-703. [ Links ]
Crowe, J.H., Hoekstra, F.A. y Crowe, L.M. (1992). Anhydrobiosis. Annual Review Plant Physiology 54, 579-599. [ Links ]
de Virgilio, C., Hottiger, T., Dominguez, J., Boller, T. y Wiemken, A. (1994). The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. European Journal Biochemical 219, 179-186. [ Links ]
den Hollander, J.A., Ugurbil, K., Brown, T.R. y Shulman, R.G. (1981). Phosphorus-31 nuclear magnetic resonance studies of the effect of oxygen upon glycolysis in yeast. Biochemistry 20, 5871-5880. [ Links ]
Domínguez, A., Fermiñán, E., Sánchez, M., González, F.J., Pérez-Campo, F. M., García, S., Herrero, A.B., San Vicente, A., Cabello, J., Prado, M., Iglesias, F.J., Choupina, A., Burguillo, F. J., Fernández-Lago., L. Loípez, M.C. (1998). Non-conventional yeasts as hosts for heterologous protein production. International Microbiol 1, 131-142. [ Links ]
Drennan, P.M., Smith, M.T., Goldsworthy, D., y van Staden, J. (1993). The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw. Journal Plant Physiology 142, 493-496. [ Links ]
Elbein, A.D. (1974). The metabolism of alpha, alpha-trehalose. Advances Carbohydrate. Chemical. Biochemical 30, 227-256. [ Links ]
Elbein, A.D. y Mitchell, M. (1973). Levels of glycogen and trehalose in Mycobacterium smegmatis and the purification and properties of the glycogen synthetase. Journal of Bacteriology 113, 863-873. [ Links ]
Elbein, A.D., Pan, Y.T., Pastuszak, I. y Carroll, D. (2003). New insights on trehalose: a multifunctional molecule. Glycobiology 13, 17-27. [ Links ]
Flores, C.L., Rodríguez, C., Petit, T. y Gancedo, C. (2000). Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiology Reviews 24, 507-529. [ Links ]
Gadd, G.M., Chalmers, K., y Reed, R.H. (1987). The role of trehalose in dehydration resistance of Saccharomyces cerevesiae. FEMS Microbiology Letters 48, 249-254. [ Links ]
Ghislain, M., De Sadeleer, M. y Goffeau, A. (1992). Altered plasma membrane H+- ATPase from the Dio-9-resistant pma1-2 mutant of Schizosaccharomyces pombe. European Journal Biochemical 209, 275-279. [ Links ]
Goddijn, O.J.M. y Smeekens, S. (1998). Sensing trehalose biosynthesis in plants. Plant Journal 14, 143-146. [ Links ]
Goffeau, A. y Slayman, C.W. (1981). The proton-translocating ATPase of the fungal plasma membrane. Biochemical Biophysical Acta 639, 197-223. [ Links ]
Guldfeldt, L. U. y Arneborg, N. 1998. The effect of yeast trehalose content at pitching on fermentation performance during brewing fermentations. Journal of the Institute of Brewing 104, 37-39. [ Links ]
González-Hernández, J.C., Jiménez-Estrada, M. y Peña, A. (2005). Comparative analysis of trehalose production by Debaryomyces hansenii and Saccharomyces cerevisiae under saline stress. Extremophiles 9,7-16. [ Links ]
González-Hernández, J.C., Pérez, E., Damián R. y Chávez-Parga, M.C. (2012). Isolation, molecular and fermentative characterization ofa yeast used in ethanol production during mezcal elaboration. Revista Mexicana de Ingeniería Química 11, 7389-400. [ Links ]
Gutiérrez, P. H. y De la Vara, S. R. (2008). Análisis y diseño de experimentos. Editorial McGraw-Hill. México. [ Links ]
Hansen, P. J. (2000). Use of a Hemocytometer. Disponible en: http://www.animal.ufl.edu/hansen/protocols/hemacytometer.html. Accesado: 10 Febrero 2011. [ Links ]
Hottiger, T., Boller, T. y Wiemken, A. (1987). Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Letters 220, 113-115. [ Links ]
Imai, T., y T. Ohno. (1995). The relationship between viability and intracellular pH in the yeast Saccharomyces cerevisiae. Applied. Environmental. Microbiology 61, 3604-3608. [ Links ]
Jain, N.K. y Roy, I. (2009). Effect of trehalose on protein structure. Protein Science 18, 24-36. [ Links ]
Joao, A.J., Polizeli, T.M.M.L., Thevelein, J.M. y Terenzi, H.F. (1997). Trehalases and trehalose hydrolysis in fungi. FEMS Microbiology Letters 154, 165-171. [ Links ]
Kempf, B. y Bremer, E. (1998). Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Archives Microbiology 170, 319-330. [ Links ]
Komes, D., Lovric, T., Ganic, K.K. y Gracin, L. (2003). Study of trehalose addition on aroma retention in dehydrated strawberry puree. Food Technology Biotechnology 41, 111-120. [ Links ]
Kurtzman, C.P. y Fell, J.W. (1998). The Yeasts, a Taxonomic Study, Elsevier Science, Amsterdam. [ Links ]
Lillie, S.H. y Pringle, J.R. (1980). Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. Journal of Bacteriology 143, 1384-1394. [ Links ]
Miyazaki, J., Miyagawa, K. y Sugiyama, Y. (1996). Trehalose accumulation by a Basidiomycotinous yeast, Filobasidum floriforme. Journal of Fermentation and Bioengineering 81, 315-319. [ Links ]
Miller, G.L. (1959). Use of Dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31, 426-428. [ Links ]
Moller, K. (2001). Glucose metabolism in the petite-negative yeast Saccharomyces kluyveri. Ph.D. thesis, Technical University of Denmark, Kgs. Lyngby, Denmark. [ Links ]
Murphy, H.N., Stewart, G.R., Mischenko, V.V., Apt, A.S., Harris, R., McAlister, M.S., Driscoll, P.C., Young, D.B. y Robertson, B.D. (2005). The OtsAB pathway is essential for trehalose biosynthesis in Mycobacterium tuberculosis. Journal of Biological Chemistry 280, 14524-14529. [ Links ]
Noventa-Jordão, M.A., de Lourdes, M., Polizeli, T.M., Bonini, B.M., Jorge, J.A., y Terenzi HF. (1996). Effects of temperature shifts on the activities of Neurospora crassa glycogen synthase, glycogen phosphorylase and trehalose-6-phosphate synthase. FEBS Letters 378, 32-36. [ Links ]
Pérez, E., González-Hernández, J.C., Chávez-Parga, M.C. y Cortés-Penagos, C. (2012). Fermentative characterization of producers ethanol yeast from Agave cupreata juice in mezcal elaboration. Revista Mexicana de Ingeniería Química 12, 451-461. [ Links ]
Prior, C., S. Potier, J. L. Souciet, y H. Sychrova. (1996). Characterization of the NHA1 gene encoding a Na+/H+ antiporter of the yeast Saccharomyces cerevisiae. FEBS Letters 387, 89-93. [ Links ]
Ohtake, S., y Wang, Y.J. (2011). Trehalose: current use and future applications. Journal Pharmacy Science 100, 2020-2053. [ Links ]
Ramírez, J., O. Ramírez, C. Saldaña, R. Coria, y A. Peña. (1998). A Saccharomyces cerevisiae mutant lacking a K+/H+ exchanger. Journal of Bacteriology 180, 5860-5865. [ Links ]
Riberio, M.J.S, Leão, L.S.C., Morais, P.B., Rosa, C. A. y Panek, A.D. (1999). Trehalose accumulation by tropical yeast strains submitted to stress conditions. Antonie van Leeuwenhoek 75, 245-251. [ Links ]
Richards, A.B., Krakowa, S., Dexter, L.B., Schmid, H., Wolterbeek, A.P.M., Waalkens-Berendsen, D. H., Shigoyuki, A. y Kurimoto, M. (2003). Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chemical Toxicology 40, 871-898. [ Links ]
Salhany, J.M., Yamane, T., Shulman, R.G. y Ogawa, S. (1975). High resolution 31P nuclear magnetic resonance studies of intact yeast cells. Proceedings ofthe National Academy of Sciences 72, 4966-4970. [ Links ]
Serrano, R. (1983). In vivo glucose activation of the yeast plasma membrane ATPase. FEBS Letters 156, 11-14. [ Links ]
Serrano, R. (1984). Plasma membrane ATPase of fungi and plants as a novel type of proton pump. Current Topics on Cellular Regulation 23, 87-126. [ Links ]
Shima, J., Hino, A., Yamada, C., Suzuki, Y., Nakajima, R., Watanabe, H., Mori, K. y Takano, Y. (1999). Stress tolerance indoughs of Saccharomyces cerevisiae trehalase mutants derived from commercial baker's yeast. Apply Environmental Microbiol 65, 2841-2846. [ Links ]
Van Dijck, P., Colavizza, D., Smet, P. y Thevelein, J. M. (1995). Differential importance of trehalose in stress resistance in fermenting and non fermenting Saccharomyces cerevisiae cells. Applied Environmental Microbiol 61, 109-115. [ Links ]
Werner-Washburne, M., Braun, E., Johnston, G.C. y Singer, R.A. (1993). Stationary Phase in the Yeast Saccharomyces cerevisiae. Microbiological Reviews 57, 383-401. [ Links ]
Whatmore, A.M., y Reed, R.H. (1990). Determination of turgor pressure in Bacillus subtilis: a possible role for Kp in turgor regulation. Journal Genetics Microbiology 136, 2521-2526. [ Links ]
Wurst, M., Sigler, K. y Knotkovaí, A. (1980). Gas chromatographic determination of extracellular metabolites produced by baker's yeast during glucose-induced acidification. Folia Microbiology 25, 306-310. [ Links ]