Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de ingeniería química
versión impresa ISSN 1665-2738
Rev. Mex. Ing. Quím vol.14 no.1 Ciudad de México ene./abr. 2015
Biotecnología
Extracción y caracterización de proteasas de pepino de mar Isostichopus fuscus recolectado en el Golfo de California, México
Extraction and characterization of sea cucumber Isostichopus fuscus proteases, collected at the Gulf of California, Mexico
A.C. Hernández-Sámano1, X. Guzmán-García1, R. García-Barrientos2, F. Ascencio-Valle3, A. Sierra-Beltrán3, B. Vallejo-Córdoba4, A.F. González-Córdova4, M.J. Torres-Llanez4 y I. Guerrero-Legarreta1*
1 Universidad Autónoma Metropolitana, Unidad Iztapalapa. San Rafael Atlixco 186. C.P. 09340. México D.F., México. *Autora para la correspondencia. E-mail: isabel_guerrero_legarreta@yahoo.com
2 Universidad Politécnica de Tlaxcala. Av. Universidad Politécnica 1. C.P. 90180. Tlaxcala, México.
3 Centro de Investigaciones Biológicas del Noroeste S.C., Instituto Politécnico Nacional 195. C.P. 23096. Baja California Sur. México.
4 Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a la Victoria Km. 0.6. C.P. 83304. Hermosillo, Sonora.
Recibido 9 de Julio de 2014
Aceptado 22 de Febrero de 2015
Resumen
Se estudiaron extractos enzimáticos del músculo ventral de Isostichopus fuscus. Se observó máxima actividad proteolítica a pH 2, 6 y 8, y 50-60°C. La mayor estabilidad enzimática fue a pH 2-6 (excepto pH 3), y a 0-40°C. Se detectó una actividad residual mayor a 74% después del calentamiento a 70°C y 80°C por 1 h, confirmándose la presencia de enzimas termo resistentes. Asimismo, los extractos retuvieron 59% de la actividad inicial después de almacenarse a 4-5°C por 21 días. Hg2+ aumentó la actividad proteolítica 16%, mientras Cu2+ y Mn2+ la inhibieron parcialmente, lo que sugirió la presencia de cisteín y metalo proteasas. El extracto enzimático se inhibió por pepstatina A, β-mercaptoetanol y EDTA, confirmando la predominancia de aspartil, cisteín y metalo proteasas. Por SDS-PAGE se identificaron cuatro proteínas (180.6, 114.5, 91.7 y 52.9 kDa) y estudios de zimografía corroboraron la presencia de proteasas. Después de purificar el extracto por intercambio aniónico se detectó una proteasa de 49 kDa, posiblemente metalo proteasa. Por espectrometría de masas se encontró homología con tripsina y con la cadena E del complejo inhibidor de triptasa (LDTI). Debido a que no se confirmó homología con ninguna metalo proteasa previamente descrita, se sugirió que esta proteasa es una enzima novedosa.
Palabras clave: pepino de mar, Isostichopus fuscus, músculo ventral, proteasas, caracterización enzimática.
Abstract
Enzyme extracts obtained from I. fuscus ventral muscle were studied. Peak activity was observed at pH 2, 6, and 8, and 50-60°C, whereas maximum enzymatic stability occurred at pH 2 to 6 (except pH 3) and 0 to 40°C. More than 74% residual activity was retained after heating at 70°C and 80°C for 1 h, confirming the presence of heat-resistant enzymes. The extracts also retained 59% initial activity after 21-day storage at 4-5°C. Hg2+ increased the proteolytic activity in 16%, whereas Cu2+ and Mn2+ caused partial inhibition, suggesting the presence of cysteine- and metallo- proteases. Extracts were inhibited by pepstatin A, β-mercaptoethanol and EDTA, confirming the predominance of aspartyl-, cystein-, and metallo-, proteases. Four proteins were identified by SDS-PAGE (180.6, 114.5, 91.7 and 52.9 kDa). Zymograms on casein confirmed the presence of proteolytic enzymes. After purification by anion exchange chromatography a 49 kDa protease, possible metalloprotease, was detected. Mass spectrometry of the partially purified protein showed homology with trypsin and chain E, leech-derived tryptase inhibitor trypsin complex (LDTI). Due that no homology was found with any previously described metalloproteases, the presence of a novel enzyme is suggested.
Key words: sea cucumber, Isostichopus fuscus, ventral muscle, proteases, enzyme characterization.
DESCARGAR ARTÍCULO EN FORMATO PDF
Referencias
Anson, M.L. (1938). The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. Journal of General Physiology 22, 79-89. [ Links ]
Aranishi, F., Hara, K., Osatomi, K., y Ishihara, T. (1997). Purification and characterization of cathepsin B from hepatopancreas of carp Cyprinus carpio. Comparative Biochemistry and Physiology - Part B: Biochemistry and Molecular Biology 118, 531-537. [ Links ]
Bernal, G., Ripa, P., y Herguera, J.C. (2001). Oceanographic and climatic variability in the lower Gulf of California: Links with the tropics and north. Journal of Marine Science 27, 595-617. [ Links ]
Bordbar, S., Anwar, F., y Saari, N. (2011). High-Value Components and Bioactives from Sea Cucumbers for Functional Foods-A Review. Marine Drugs 9, 1761-1805. [ Links ]
Chang, Y., Yu, C. y Songxin. (2004). Pond culture of sea cucumbers, Apostichopus japonicas, in Dalian. FAO Fisheries and Aquaculture Technical Paper 463, 269-272. [ Links ]
Cui, F., Xue, C., Li, Z., Zhang, Y., Dong, P. y Fu, X. (2007). Characterization and subunit composition of collagen from the body wall of sea cucumber Stichopus japonicus. Food Chemistry 100, 1120-1125. [ Links ]
Dai, Z. (1990). A review on autolysis in fish. Journal of Zhejiang College of Fisheries 9, 51-56. [ Links ]
Daniel, R.M., Toogood, H.S. y Bergquist, P.L. (1995). Thermostable proteases. Biotechnology and Genetic Engineering 13, 50-100. [ Links ]
Deichmann, E. (1958). The Holothuroidea collected by The Velero II and IV during the years 1932 to 1954. Part II. Aspidochirota. Allan Hancock Pacific Expedition 2, 253-348. [ Links ]
DeMoor, S., Waite, J.H., Jangoux, M. y Flammang, P. (2003). Characterization of the adhesive from Cuvierian tubules of the sea cucumber Holothuria forskali (Echinodermata, Holothuroidea). Marine Biotechnology 5, 4557. [ Links ]
Dublán, O., Salazar, A., Cruz-Camarillo, R., Guerrero-Legarreta, I. y Ponce, E. (2006). Effect of refrigerated storage on proteolytic activity, physicochemical and microstructural properties of giant squid (Dosidicus gigas) mantle muscle. Journal of Muscle Foods 17, 291-310. [ Links ]
Foegeding, E.A., Lanier, T.C. y Hultion, H.O. (2000). Características de los tejidos musculares comestibles. En: Química de los Alimentos, (O.R. Fennema ed.). Acribia, Zaragoza, España. [ Links ]
Food and Agriculture Organization of the United Nations. (2010). Managing sea cucumber fisheries with an ecosystem approach. FAO Fisheries and Aquaculture Technical Paper 520. [ Links ]
Fu, X., Xue, C., Miao, B., Li, Z., Gao, X. y Hirata, T. (2006). Distribution and seasonal activity variation of proteases in digestive tract of sea cucumber Stichopus japonicus. Fisheries Science 72, 1130-1132. [ Links ]
Fu, X., Xue, C., Miao, B., Li, Z., Gao, X. y Yang, W. (2005). Characterization of proteases from the digestive tract of sea cucumber (Stichopus japonicus): High alkaline protease activity. Aquaculture 246, 321-329. [ Links ]
Gao, F., Yang, H., Xu, Q., Wang, F. y Liu, G. (2009). Effect of water temperature on digestive enzyme activity and gut mass in sea cucumber Apostichopus japonicas (Selenka), with special reference to aestivation. Chinese Journal of Oceanology and Limnology 27, 714-722. [ Links ]
García-Carreño, F.L. y Haard, N.F. (1993). Characterization of proteinase classes in langostilla (Pleuroncodesplanipes) and crayfish (Pacifastacus astacus) extracts. Journal of Food Biochemistry 17, 97-113. [ Links ]
González-Valdez, J., Mayolo-Deloisa, K., González-González, M., Rito-Palomares M. (2014). Trends in bioseparations. Revista Mexicana de Ingeniería Química 13, 19-27. [ Links ]
Haard, N. y Simpson, B. (2000). Seafood Enzymes: Utilization and Influence on Postharvest Seafood Quality. Editorial Marcel Dekker Inc., New York, USA. [ Links ]
Hernández-Martínez, R., Gutiérrez-Sánchez, G., Bergmann, C.W., Loera-Corral, O., Rojo-Domínguez, A. y Huerta-Ochoa, S. (2011). Purification and characterization of a thermodynamic stable serine protease from Aspergillus fumigatus. Process Biochemistry 46, 2001-2006. [ Links ]
Herrero-Perezrul, M.D., Reyes-Bonilla, H., Garcia-Domínguez, F. y Cintra-Buenrostro, C.E. (1999). Reproduction and growth of Isostichopus fuscus (Echinodermata: Holothuroidea) in the southern Gulf of California, Mexico. Marine Biology 135, 521-532. [ Links ]
Jiaxin, C. (2004). Present status and prospects of sea cucumber industry in China. Advances in Sea Cucumber Aquaculture and Management. FAO Fisheries and Aquaculture Technical Paper 463. [ Links ]
Kunitz, M. (1946). Crystalline soybean trypsin inhibitor II. Journal of General Physiology 30, 291-310. [ Links ]
Laemmli, U.K. (1970). Cleavage of structure proteins during the assembly of head of bacteriophage T4. Nature 277, 680-685. [ Links ]
Lawrence, J.M. (1982). Digestion. En: Echinoderm nutrition, (J.M. Lawrence, M. Jangoux eds). Pp. 283-316. Balkema, Rotterdam. [ Links ]
Liao, Y.L. (1997). Fauna Sinica, Phylum Echinodermata, Class Holothuroidea. Science Press, Beijing, China 334. [ Links ]
Liu, X., Zhu, G., Zhao, Q., Wang, L. y Gu, B. (2004). Studies on hatchery techniques of the sea cucumber, Apostichopus japonicus. Advances in Sea Cucumber Aquaculture and Management. FAO Fisheries and Aquaculture Technical Paper 463, 287-296. [ Links ]
Liu, Z., Oliveira, A.C.M. y Yi-Cheng, S. (2010). Purification and characterization of pepsin-solubilized collagen from skin and connective tissue of giant red sea cucumber (Parastichopus californicus). Journal of Agricultural and Food Chemistry 58, 1270-1274. [ Links ]
Lluch-Cota, S.E., Aragon-Noriega, E.A., Arreguin-Sanchez, F., Aurioles-Gamboa, D., Bautista-Romero, J.J., Brusca, R.C., Cervantes-Duarte, R., Cortes-Altamirano, R., Del-Monte-Luna, P., Esquivel-Herrera, A., Fernandez, G., Hendrickx, M.E., Hernandez-Vazquez, S., Herrera-Cervantes, H., Kahru, M., Lavin, M., Lluch-Belda, D., Lluch-Cota, D.B., Lopez-Martinez, J., Marinone, S.G., Nevarez-Martinez, M.O., Ortega-Garcia, S., Palacios-Castro, E., Pares-Sierra, A., Ponce-Diaz, G., Ramirez-Rodriguez, M., Salinas-Zavala, C.A., Schwartzlose, R.A. y Sierra-Beltran, A.P. (2007). The Gulf of California: review of ecosystem status and sustainability challenges. Progress in Oceanography 73, 1-26. [ Links ]
Lowry, O.H., Rosebrough, N.J. y Farr, A.L. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265-275. [ Links ]
Ludwig, H.L. (1875). Beitrage zur Kenntniss der Holothurien. Arbeiten aus dem Zoologisch-Zootomischen Institut in Wurzburg 2, 77-120. [ Links ]
Maluf, L.Y. (1988). Composition and distribution of the Central Eastern Pacific echinoderms. Natural History Museum of Los Angeles County Technical Representative 2, 1-242. [ Links ]
Marcial J., Pérez de los Santos A.I., Fernández F.J., Díaz-Godínez G.D, Montiel-González A.M. y Tomasini A. (2011). Characterization of an aspartic protease produced by Amylomyces rouxii. Revista Mexicana de Ingeniería Química 10, 9-16. [ Links ]
Mercier, A., Ycaza, R. y Hamel, J.F. (2004). Aquaculture of the Galápagos sea cucumber, Isostichopus fuscus. Advances in Sea Cucumber Aquaculture and Management. FAO Fisheries and Aquaculture Technical Paper 463, 347-358. [ Links ]
Nagase, H. y Woessner Jr., J.F. (1999). Matrix metalloproteinases. Journal of Biological Chemistry 274, 21491-21494. [ Links ]
Qi, H., Dong, X.P., Cong, L.N., Gao, Y., Liu, L. y Mikiro, T. (2007). Purification and characterization of a cysteine-like protease from the body wall of the sea cucumber Stichopus japonicus. Fish Physiology and Biochemistry 33, 181-188. [ Links ]
Quiñones, J.L., Rosa, R., Ruiz, D.L., y García, J.E. (2002). Extracellular matrix remodeling and metalloproteinase involvement during intestine regeneration in the sea cucumber Holothuria glaberrima. Developmental Biology 250, 97-181. [ Links ]
Rodríguez-Huezo M.E., Villagómez-Zavala D.L., Lozano-Valdés B. y Pedroza-Islas R. (2010). Surface properties of maize, fish and bovine serum protein hidrolysates. Revista Mexicana de Ingeniería Química 9, 241-250. [ Links ]
Salazar-Leyva J.A., Lizardi-Mendoza J., Ramírez-Suarez J.C., García-Sánchez G., Ezquerra-Brauer J.M., Valenzuela-Soto E.M., Carvallo-Ruiz M.G., Lugo-Sánchez M.E. y Pacheco-Aguilar R. (2014). Utilization of chitin and chitosan based materials for protease immobilization: Stabilization effects and applications. Revista Mexicana de Ingeniería Química 13, 129-150. [ Links ]
Salgado-Castro, L.R. (1993). Sea cucumber fisheries of the Pacific Coast (Parastichopus parvimensis) and P. californicus and Isostichopus fuscus, from the Gulf of California. National Fisheries Institute. Ministry of Fisheries 114. [ Links ]
Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT) (2010). NORMA Oficial Mexicana NOM-059-SEMARNAT-2010. Direccioín General de Vida Silvestre, México. [ Links ]
Shahidi, F. y Janak-Kamil, Y.V.A. (2001). Enzymes from fish and aquatic invertebrates and their application in the food industry. Trends in Food Science and Technology 12, 435-464. [ Links ]
Sun, L.M., Zhu, B.W., Wu, H.T., Yu, L., Zhou, D.Y., Dong, X., Yang J.F., Li D.M., Ye W.X. y Murata Y. (2011). Purification and characterization of cathepsin B from the gut of the sea cucumber (Stichopus japonicas). Food Science and Biotechnology 20, 919-925. [ Links ]
Tipper, J.P., Lyons-Levy, G., Atkinson, M.A.L., y Trotter, J.A. (2003). Purification, characterization and cloning of tensilin, the collagen-fibril binding and tissue-stiffening factor from Cucumaria frondosa dermis. Matrix Biology 21, 625-635. [ Links ]
Visse, R., y Nagase, H. (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases structure, function, and biochemistry. Circulation Research 92, 39-827. [ Links ]
Wang, F. (1997). Nutrient analysis of frozen sea cucumber (Acaudina molpadioides) East China Sea. Journal of Marine Science 15, 65-67. [ Links ]
Wang, R., y Cheng, Y. (2004). Breeding and culture of the sea cucumber Apostichopus japonicas, Liao. Advances in Sea Cucumber Aquaculture and Management. FAO Fisheries and Aquaculture Technical Paper 463, 277-286. [ Links ]
Wu, H.L., Hu, Y.Q., Shen, J.D., Cai, Q.F., Liu, G.M., Su, W.J. y Cao, M.J. (2013a). Identification of a novel gelatinolytic metalloproteinase (GMP) in the body wall of sea cucumber (Stichopus japonicas) and its involvement in collagen degradation. Process Biochemistry 48, 871-877. [ Links ]
Wu, H.T., Li, D.M., Zhu, B.W., Sun, J.J., Zheng J., Wang, F.L., Konno, K. y Jiang X. (2013b). Proteolysis of noncollagenous proteins in sea cucumber, Stichopus japonicus, body wall: Characterization and the effects of cysteine protease inhibitors. Food Chemistry 141, 1287-1294. [ Links ]
Yamaguchi, T., Yashita, Y., Takeda, I., y Kiso, H. (1983). Proteolytic enzymes in green asparagus kiwi fruit and miut: Occurrence and partial characterization. Agricultural and Biological Chemistry 46, 1983-1986. [ Links ]
Zhu, B.W., Zhao, L.L., Sun, L.M., Li, D.M., Murata, Y., Yu, L. y Zhang, L. (2008). Purification and characterization of a cathepsin L-like enzyme from the body wall of the sea cucumber Stichopus japonicus. Bioscience, Biotechnology, and Biochemistry 72, 1430-1437. [ Links ]