SciELO - Scientific Electronic Library Online

 
vol.14 número1Observador nolineal para sistemas conmutados: aplicación a un biorreactor en loteAnálisis del desempeño de controladores lineales sintonizados en diferentes estados estacionarios del biorreactor de Cholette mediante técnicas de decisión multi-criterio índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.14 no.1 Ciudad de México ene./abr. 2015

 

Simulación y control

 

On the dynamic behaviour of a class of bioreactor with non-conventional yield coefficient form

 

Sobre el comportamiento dinámico de un tipo de biorreactor con un coeficiente de rendimiento no convencional

 

R.V. Gómez-Acata1, G. Lara-Cisneros2, R. Femat2, R. Aguilar-López1*

 

1 Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, DF. *Corresponding author. E-mail: raguilar@cinvestav.mx

2 División de Matemáticas Aplicadas, IPICYT, Camino a la Presa San José 2055, San Luis Potosí, S.L.P., México.

 

Recibido 27 de Febrero de 2014
Aceptado 19 de Febrero de 2015

 

Abstract

The goal of this work is to analyze by numerical bifurcation the dynamical behavior of a class of continuous bioreactor used to hydrolyze cellulose using Cellulomonas cellulans, talcing into account the effect of mo deling the growth rate of this microorganism by six different kinetics models (monotonic and non-monotonic). Furthermore, it is considered that the biomass yield can be modeled as a constant or a variable case, for the variable case, a substrate dependent Gaussian-type function was proposed. The proposed non-conventional yield function is a realistic appro ach that describes the behavior of the cellular yield, unlike other modelt, this one Is bounded to the maximum cellular yield and can be extrapolated to several operation conditions. Numerical results show changes in the equilibrium branches due to the kinetic growth model used. The non-conventional model of biomass yield produces a shift in the steady state multiplicity intervals, and new limit cycles were found with certain specific values of dilution rate and substrate feed.

Key words: bifurcation analysis, continuous flow, limit cycle, local stability analysis, steady-state multiplicity, unstructured kinetic models.

 

Resumen

El objetivo de este trabajo es analizar mediante bifurcation numerica el comportamiento dinámico de una clase de biorreactor continuo, utilizado para la hidrolisis de carboximetilcelulosa por Cellulomonas cellulans, tomando en cuenta el efecto de modelar la velocidad de crecimiento de este microorganismo por seis diferentes modelos cineticos no estructurados (monotonicos y no-monotónicos). En el analisis se considera que el rendimiento celular puede ser modelado como un valor constante o variable, para este ultimo caso, fue propuesta una funcion tipo Gaussiana dependiente de la concentration de sustrato. El modelo para el rendimiento celular variable utilizadorepresenta un enfoque mas realista para describir el rendimiento celular, a diferencia de otros modelos reportados, la funcion es acotada al maximo rendimiento celular y puede ser extrapolado a diferentes condiciones de operation. Los resultados numericos revelan cambios en las ramas de equilibrio debido al modelo de crecimiento utilizado. El modelo no convencional del coeficiente de rendimiento ocasiona un desplazamiento en los intervalos de multiplicidad de estados estacionarios, cambios en la estabilidad de los puntos de equilibrio y el surgimiento de ciclos límite a ciertos valores específicos de la tasa de dilution y de la concentration del sustrato de alimentation.

Palabras clave: análisis de bifurcación, flujo continuo, ciclo límite, analisis de estabilidad local, multiplicidad de estados estacionarios, modelos cinéticos no estructurados.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

R.V.G.A wishes to acknowledge to the CINVESTAV and the CONACyT for the doctoral scholarship number 290564; Gerardo Lara-Cisneros thanks CONACyT for the postdoctoral fellowship grant.

 

References

Abashar, M. y Elnashaie, S. (2010). Dynamic and chaotic behavior of periodically forced fermentors for bioethanol production. chemical Engineering Science 65, 4894.         [ Links ]

Agarwal, R., Mahanty, B. y Dasu, V.V. (2009). Modeling growth of Cellulomonas cellulans nrrl b 4567 under substrate inhibition during cellulase production. Chemical and Biochemical Engineering Quarterly 23, 213.         [ Links ]

Agrawal, P., Lee, C., Lim, H.C. y Ramkrishna, D. (1982). Theorical investigations of dynamic behavior of isothermal continuous stirred tank biological reactors. Chemical Engineering Science 37, 453.         [ Links ]

Ajbar, A. (2001). On the existence of oscillatory behavior in unstructered models of bioreactors. Chemical Engineering Science 56, 1991.         [ Links ]

Ajbar, A. y Alhumaizi, K. (2012). Dynamics of the chemostat: A bifurcation theory approach. CRC Press Taylor & Francis Group, USA.         [ Links ]

Alvarez-Ramirez, J., Alvarez, J. y Velasco, A. (2009). On the existence of sustained oscillations in a class of bioreactors. Computers & Chemical Engineering 33, 4.         [ Links ]

Allen, L.J.S. (2007). An Introduction to Mathematical Biology. Pearson/Prentice Hall, NJ.         [ Links ]

Crooke, P.S., Wei, C.-J. y Tanner, R.D. (1980). The effect of the specific growth rate and yield expressions on the existence of oscillatory behavior of a continuous fermentation model. Chemical Engineering Communications 6, 333.         [ Links ]

Dong, Q.L. y Ma, W.B. (2013). Qualitative analysis of the chemostat model with variable yield and a time delay. Journal of Mathematical Chemistry 51, 1274.         [ Links ]

Fu, G. y Ma, W. (2006). Hopf bifurcations of a variable yield chemostat model with inhibitory exponential substrate uptake. Chaos, Solitons & Fractals 30, 845.         [ Links ]

Fu, G., Ma, W. y Shigui, R. (2005). Qualitative analysis of a chemostat model with inhibitory exponential substrate uptake. Chaos, Solitons & Fractals 23, 873.         [ Links ]

Garhyan, P., Elnashaie, S.S.E.H., Al-Haddad, S.M., Ibrahim, G. y Elshishini, S.S. (2003). Exploration and exploitation of bifurcation/chaotic behavior of a continuous fermentor for the production of ethanol. Chemical Engineering Science 58, 1479.         [ Links ]

Gray, P. y Scoot, S.K. (1990). Chemical oscillations and instabilities. Non-linear chemical kinetic. Clarendon Press. Oxford,         [ Links ]

Huang, X., Zhu, L. y Chang, E.H.C. (2007). Limit cycles in a chemostat with general variable yields and growth rates. Nonlinear Analysis: Real World Applications 8, 165.         [ Links ]

Ibrahim, G., Habib, H. y Saleh, O. (2008). Periodic and chaotic solutions for a model of a bioreactor with cell recycle. Biochemical Engineering Journal 38, 124.         [ Links ]

Karaaslanl, C.Ç. (2012) Bifurcation analysis and its applications. En: Numerical simulation - from theory to industry, (M. Andriychuk,ed.), Pp. 3. Intech.         [ Links ]

Lara-Cisneros, G., Femat, R. y Perez, E. (2012). On dynamical behaviour of two-dimensional biological reactors. International Journal of Systems Science 43, 526.         [ Links ]

Lenbury, Y. y Chiaranai, C. (1987). Bifurcation analysis of a product inhibition model of a continuous fermentation process. Applied Microbiology and Biotechnology 25, 532.         [ Links ]

Lenbury, Y.W. y Punpocha, M. (1989). The effect of the yield expression on the existence of oscillatory behavior in a three-variable model of a continuous fermentation system subject to product inhibition. Biosystems 22, 273.         [ Links ]

Namjoshi, A., Kienle, A. y Ramkrishna, D. (2003). Steady-state multiplicity in bioreactors: Bifurcation analysis of cybernetic models. Chemical Engineering Science 58, 793.         [ Links ]

Nelson, M.I. y Sidhu, H.S. (2005). Analysis of a chemostat model with variable yield coefficient. Journal of Mathematical Chemistry 38, 605.         [ Links ]

Nelson, M.I. y Sidhu, H.S. (2008). Analysis of a chemostat model with variable yield coefficient: Tessier kinetics. Journal of Mathematical Chemistry 46, 303.         [ Links ]

Nelson, M.I., Sidhu, H.S. (2009). Analysis of a chemostat model with variable yield coefficient: Tessier kinetics. Journal of Mathematical Chemistry 46, 303.         [ Links ]

Nielsen, J.H., Villadsen, J. y Lide?n, G. (2003). Bioreaction Engineering Principles (3rd. ed.). Springer. New York.         [ Links ]

Pilyugin, S.S.W., Paul. (2003). Multiple limit cycles in the chemostat with variable yield. Mathematical Biosciences 182, 151.         [ Links ]

Gupta, P., Samant, K., and Sahu, A. (2012). Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. International Journal of Microbiology 2012, 1.         [ Links ]

Sterner, R.W., Small, G. E. & Hood, J. M. (2012). The conservation of mass. Nature Education Knowledge 3, 20.         [ Links ]

Strogatz, S.H. (1994). Nonlinear dynamics and chaos : With applications to physics, biology, chemistry, and engineering. Perseus Books Publishing, L.L.C. Massachusetss, U.S.         [ Links ]

Sun, J.-Q. y Luo, A.C.J. (2012). Global Analysis of Nonlinear Dynamics. Springer, New York.         [ Links ]

Sun, K., Tian , Y., Chen, L. y Kasperski, A. (2010). Nonlinear modelling of a synchronized chemostat with impulsive state. Mathematical and Computer Modelling 52, 227.         [ Links ]

Wu, W., & Chang, H.-Y. (2007). Output regulation of self-oscillating biosystems: Model-based pi/pid control approches. Industrial & Engineering Chemistry Research.         [ Links ]

Zhang, Y. & Henson, M.A. (2001). Bifurcation analysis of continuous biochemical reactor models. Biotechnology Progress 17, 647.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons