SciELO - Scientific Electronic Library Online

 
vol.14 número2Criterios cinéticos y estadísticos para la selección de las condiciones de extracción de compuestos volátiles en chile piquín (Capsicum annuum L. var. glabriusculum)Formulación y estadística de una bebida de naranja preparada a base de suero y su estabilidad de almacenamiento índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.14 no.2 Ciudad de México may./ago. 2015

 

Ingeniería de alimentos

 

Colorimetric image analysis as a factor in assessing the quality of pork ham slices during storage

 

Análisis colorimétrico de imágenes como factor de evaluación de la calidad de rebanadas de jamón de cerdo durante almacenamiento

 

L.D. Porras-Barrientos1, M.I. González-Hurtado1, O.A. Ochoa-González1, L.I. Sotelo-Díaz2, G.A. Camelo-Méndez2 and M.X. Quintanilla-Carvajal2*

 

1 Centro de Investigación y Desarrollo Cárnico. Industria de Alimentos Zenú S.A.S. Grupo Nutresa. Cra 64C # 104-03. Medellín, Colombia.

2 Facultad de Ingeniería. Programa Ingeniería de Producción Agroindustrial. Universidad de La Sabana. Grupo de Procesos Agroindustriales. Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá. Chía, Cundinamarca, Colombia. *Corresponding author. E-mail: maria.quintanilla1@unisabana.edu.co, Tel +5718615555 ext 25216.

 

Received November 11, 2014
Accepted March 18, 2015

 

Abstract

This study analysed the colour changes of stored pork ham slices at two temperatures (4 and 8°C) to compare two imaging methodologies for estimating colour changes over time in CIELAB colour spaces through a DigiEye® and stereoscope with digital image analysis. Colour space changes were analysed using a computer vision system for image segmentation analysis. It was determined that from the ninth day, changes could be perceived in the representative colour of ham slices using DigiEye®. Finally, colour prediction equations with R2 > 0.85 were determined as a tool for electronic monitoring to assessing the quality of pork ham slices during storage.

Key words: colorimetric analysis, ham, ΔE*ab, storage conditions.

 

Resumen

En este estudio se analizaron los cambios de color de rodajas de jamón de cerdo almacenadas a dos temperaturas (4 y 8°C) con el fin de comparar dos metodologías de captura de imagen para la estimación de los cambios de color en el tiempo en los espacios de color CIELAB a través de un DigiEye®, y estereoscopio con análisis digital de imágenes. Los cambios de espacio de color se analizaron utilizando un sistema de visión por computador para el análisis de segmentación de las imágenes. Se determinó que a partir del noveno día, los cambios de color representativos podrían ser percibidos en las rebanadas de jamón utilizando DigiEye®. Por último, se lograron obtener ecuaciones de predicción de color con R2 > 0.85 como una herramienta para el monitoreo electrónico para la evaluación de la calidad de las rodajas de jamón de cerdo durante el almacenamiento.

Palabras clave: análisis colorimétrico, jamón, ΔE*ab, condiciones de almacenamiento.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

Blasco, J., Cubero, S., Gómez-Sanchís, J., Mira, P. & Moltó E. (2009). Development of a machine for the automatic sorting of pomegranate (Punica granatum) arils based on computer vision. Journal Food Engineering 90, 27-34.         [ Links ]

Brosnan, T. & Sun, D. (2004). Improving quality inspection of food products by computer vision-a review. Journal Food Engineering 61, 3-16.         [ Links ]

Camelo-Méndez, G.A.; Vanegas-Espinoza, P.E.; Jiménez-Aparicio, A.R.; Bello-Pérez, L. A.; Del Villar- Martínez, A.A. (2013) Morphometric characterization of chalkiness in Mexican rice varieties by digital image analysis and multivariate discrimination. Revista Mexicana de Ingeniería Química 12, 371-378        [ Links ]

Claus, J. R,. Sawyer, C., Vogel. K. (2010). Injection order effects on efficacy of calcium chloride and sodium tripolyphosphate in controlling the pink color defect in uncured, intact turkey breast. Meat Science 84, 755-759.         [ Links ]

Eyiler, E., Oztan, A. (2011). Production of frankfurters with tomato powder as a natural additive. LWT- Food Science and Technology 44, 307-311.         [ Links ]

Escudero-Gilete, M.L., González-Miret, M.L. & Heredia, F.J. (2010). Implications of blending wines on the relationships between the colour and the anthocyanin composition. Food Research International 43, 745-752.         [ Links ]

Fernández, J., Pérez, A., Sayas, E. & Aranda, V. (2000). Characterization of the different sates of myoglobin in pork using color parameters and reflectance ratios. Journal of Muscle Foods 11, 157-167.         [ Links ]

Fernández-Vázquez, R., Stinco, M.C., Hernanz, D., Heredia, F.J. & Vicario, I.M. (2013). Colour training and colour differences thresholds in orange juice. Food Quality and Preference 30, 320-327.         [ Links ]

Garrido, V.; García-Jalón, I.; Vitas. A.I. (2010). Temperature distribution in Spanish domestic refrigerators and its effect on Listeria monocytogenes growth in sliced ready-to-eat ham. Food Control 21, 896-901        [ Links ]

Iqbal, A., Valous, N., Mendoza, F., Sun, D.W. & Allen, P. (2010). Classification of pre-sliced pork and Turkey ham qualities based on image colour and textural features and their relationships with consumer responses. Meat Science 84, 455-465.         [ Links ]

Jackman, P., Sun, D.W. & ElMasry, G. (2012). Robust colour calibration of an imaging system using a colour space transform and advanced regression modeling. Meat Science 91, 402-407.         [ Links ]

León, K., Mery, D., Pedreschi, F., León, J., 2006. Color measurement in L*a*b* units from RGB digital images. Food Research International 39, 1084-1091.         [ Links ]

Little, M. & Hills, J. (1978). Agricultural Experimentation Design and Analysis. Editorial John Wiley and Sons, New York, United States.         [ Links ]

Maskan, M. (2001). Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal Food Engineering 48, 169-175.         [ Links ]

Mancini, R.A. & Hunt, M.C. (2005). Current research in meat color. Meat Science 71, 100-121        [ Links ]

Pathare, B., Opara, L. & Al-Said, A. (2013). Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food and Bioprocess Technology 6, 36-60.         [ Links ]

Penfield, M. and Campbell. M. (1990). Experimental Food Science (Third Edition), Chapter 9, 184-223.         [ Links ]

Quevedo, R., Mendoza, F., Aguilera, J.M., Chanona, J.G. & Gutiérrez-López, G. (2008). Determination of senescent spotting in banana (Musa Cavendish) using fractal texture Fourier image. Journal Food Engineering 84, 509-515.         [ Links ]

Rodríguez-Bernal, J.M., Serna-Jiménez, J.A., Uribe-Bohorquez, M.A., Klotz, B. & Quintanilla-Carvajal, M.X. (2014). Application of Response Surface Methodology to Evaluate the Effect of the concentration of Sugar and Commercials Starters on the Fermentation Kinetics of Yogurt. Revista Mexicana de Ingeniería Química 13, 113.         [ Links ]

Rodríguez-Pulido, F. J., Gordillo, B., González-Miret, M. L. & Heredia, F.J. (2013). Analysis of food appearance properties by computer vision applying ellipsoids to colour data. Computers and Electronics in Agriculture 99, 108-115.         [ Links ]

Saricoban, C. & Yilmaz, M. (2010). Modelling the effects of processing factors on the changes in colour parameters of cooked meatballs using response surface methodology. World Applied Sciences Journal 9, 14-22.         [ Links ]

Trusell, H., Saber, E. & Vrhel, M. (2005). Color image processing. IEEE Signal Processing Magazine 22, 14-22.         [ Links ]

Wu, D. & Sun, D.W. (2013). Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: A review - Part I: Fundamentals. Innovative Food Science and Emerging Technologies 19, 15-28.         [ Links ]

Zheng, C. & Sun, D. (2008). Image segmentation techniques. In: Da-Wen, S. (Ed.), Computer Vision Technology for Food Quality Evaluation. Academic Press, Amsterdam, 37-56.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons