SciELO - Scientific Electronic Library Online

 
vol.14 número2Cambios en la microestructura de Salmonella Typhimurium y Listeria monocytogenes expuestas a sales hidroxicinámicasMejoramiento del mosto de Agave duranguensis para la fermentación mejorada: Efectos de la razón C/N sobre la composición de mezcal y las propiedades sensoriales índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.14 no.2 Ciudad de México may./ago. 2015

 

Biotecnología

 

Optimization of a bacterial biosurfactant production

 

Optimización de la producción de un biosurfactante bacteriano

 

Ma. A. Martínez-Trujillo, I. Membrillo Venegas, S.E. Vigueras-Carmona, G. Zafra-Jimenez and M. García-Rivero*

 

División de Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Av. Tecnológico. s/n Col. Valle de Anáhuac CP 55210, Ecatepec, Edo. de México, México. *Corresponding author. E-mail: mayolagariv@yahoo.com.mx

 

Received August 20, 2014
Accepted May 14, 2015

 

Abstract

Bacterial biosurfactant production was optimized by means of Response Surface Methodology (RSM), in which nitrogen and carbon concentrations, as long as the addition of an immiscible substrate, supplemented for increasing the efficiency of biosurfactant biosynthesis, were the evaluated variables. A mixture of yeast extract-NaNO3, and fructose was used as nitrogen and carbon source, respectively. Under the assayed conditions yeast extract-NaNO3 relationship and hexadecane concentrations were the factors which had a significant effect on biosurfactant production at flask level. The optimal conditions, estimated by the canonical analysis of the corresponding response surface were used at a 600 mL bioreactor, obtaining a biosurfactant production measured as 74.23 % of emulsification index, which was similar to the estimated by de quadratic model.

Key words: response surface methodology, canonical analysis, nitrogen and carbon source concentration.

 

Resumen

Se optimizó la producción de un surfactante bacteriano por medio de la Metodología de Superficie de Respuesta (MSR), como variables de estudio para incrementar la eficiencia de biosíntesis del biosurfactante se evaluaron las concentraciones de carbono y nitrógeno, así como la adición de un sustrato insoluble. La fuente de nitrógeno fue una mezcla de extracto de levadura-NaNO3 y como fuente de carbono se uso fructosa. Bajo las condiciones ensayadas la relacion extracto de levadura- NaNO3 y la concentración de hexadecano fueron los factores que tuvieron un efecto significativo en la producción del biosurfactante a nivel matraz. Por medio del análisis canónico se estimaron las condiciones óptimas de la superficie de respuesta, que fueron usadas en un biorreactor de 600 mL, en el cual se obtuvo una producción de biosurfactante de 74.23% medido por el índice de emulsificación, cuyo valor fue similar al estimado por el modelo cuadrático.

Palabras clave: metodología de superficie de respuesta, análisis canónico, concentración de la fuente nitrógeno y de carbono.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

Abbasi, H., Hamedi, M. M., Lotfabad, T. B., Zahiri, H. S., Sharafi, H., Masoomi, F. and Noghabi, K. A. (2012). Biosurfactant-producing bacterium Pseudomonas aeruginosa MA01 isolated from spoiled apples: Physicochemical and structural characteristics of isolated biosurfactant. Journal of Bioscience and Bioengineering 113, 211-219.         [ Links ]

Abdel-Mawgoud, A.M., Aboulwafa, M.M. and Hassouna, N.A.H. 2008. Optimization of surfactin production by Bacillus subtilis isolate BS5. Applied Biochemistry and Biotechnology 150, 305-325        [ Links ]

Abdel-Mawgoud, A. M., Leípine, F., and Deíziel, E. (2010). Rhamnolipids: diversity of structures, microbial origins and roles. Applied Microbiology and Biotechnology 86, 1323-1336.         [ Links ]

Abouseoud, M., Maachi, R., Amrane, A., Boudergua, S., and Nabi, A. (2008). Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination 223, 143-151.         [ Links ]

Amézcua-Vega, C., Poggi-Varaldo, H. M., Esparza-García, F., Ríos-Leal, E., and Rodríguez-Vázquez, R. (2007). Effect of culture conditions on fatty acids composition of a biosurfactant produced by Candida ingens and changes of surface tension of culture media. Bioresource Technology 98, 237-240.         [ Links ]

Beal, R., and Betts, W. B. (2000). Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. Journal of Applied Microbiology 89, 158-168.         [ Links ]

Calvo, C., Manzanera, M., Silva-Castro, G. A., Uad, I., and González-López, J. (2009). Application of bioemulsifiers in soil oil bioremediation processes. Future prospects. Science of the Total Environment 407, 3634-3640.         [ Links ]

Calvo, C., Silva-Castro, G. A., Uad, I., Fandiño, C. G., Laguna, J., and González-López, J. (2008). Efficiency of the EPS emulsifier produced by Ochrobactrum anthropi in different hydrocarbon bioremediation assays. Journal of Industrial Microbiology and Biotechnology 35, 1493-1501.         [ Links ]

Cooper, D.J. and Goldenberg, B.G. (1987). Surface active agents from two Bacillus species. Applied and Environmental Microbiology 53, 224-229.         [ Links ]

Cooper, G.D., Akit, J., and Kosaric, N. (1981). Surface activity of the cells and extracellular lipids of Corynebacterium fascians CF-15. Journal of Fermentation Technology 60, 19-24.         [ Links ]

Corona-González, RI., Ramos-Ibarra, J.R., Gutiérrez-González, P., Pelayo-Ortiz, C., Guatemala-Morales, G.M., and E. Arriola-Guevara, G.M. 2013. El uso de la metodología de superficie de respuesta para evaluar las condiciones de fermentación en la producción de tepache. Revista Mexicana de Ingeniería Química 12, 19-28.         [ Links ]

Dastgheib, S.M.M., Amoozegar, M.A., Elahi, E., Asad, S. and Banat, I.M. (2008). Bioemulsifier production by a halothermophilic Bacillus strain with potential applications in microbially enhanced oil recovery. Biotechnology Letters 30, 263-270.         [ Links ]

Fakruddin, Md. (2012). Biosurfactant: Production and Application. Journal of Petroleum and Environmental Biotechnology 3, 124.         [ Links ]

García-Rivero, M., Saucedo-Castañeda, G., Gutiérrez-Rojas, M.. (2007). Organic solvents improve hydrocarbon desorption and biodegradation in highly contaminated weathered soils. Journal of Environmental Engineering Science 6, 389-395.         [ Links ]

Gomez, F. and Sartaj, M. (2014). Optimization of field scale biopiles for bioremediation of petroleum hydrocarbon contaminated soil at low temperature conditions by response surface methodology (RSM). International Biodeterioration and Biodegradation 89, 103-109.         [ Links ]

Gudiña, E.J., Pereira, J.F.B., Rodrigues, L.R., Coutinho, J.A.P. and Teixeira, J.A. (2012). Isolation and study of microorganisms from oil samples for application in microbial enhanced oil recovery. International Biodeterioration and Biodegradation 68, 56-64.         [ Links ]

Guerra-Santos, L., Käppeli, O., and Fiechter, A. (1984). Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Applied and Environmental Microbiology 48, 301-305.         [ Links ]

Huang, L., Xie, J., Lv, B. Y., Shi, X. F., Li, G. Q., Liang, F. L., Lian, J. Y. (2013). Optimization of nutrient component for diesel oil degradation by Acinetobacter beijerinckii ZRS. Marine Pollution Bulletin 76, 325-332.         [ Links ]

Helmy, Q., Kardena, E., and Funamizu, N. (2011). Strategies toward commercial scale of biosurfactant production as potential substitute for it's chemically counterparts. International Journal of Biotechnology 12, 66-86.         [ Links ]

Joshi, S., Bharucha, C. and Desai, A.J. 2008. Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B. Bioresource Technology 99, 603-608.         [ Links ]

Makkar, R., and Cameotra, S. (2002). An update on the use of unconventional substrates for biosurfactant production and their new applications. Applied Microbiology and Biotechnology 58, 428-434.         [ Links ]

Marchant, R. and Banat I.M. 2012. Microbial biosurfactants: challenges and opportunities for future exploitation. Trends in Biotechnology 30, 558-565.         [ Links ]

Montgomery, D. (2006). Diseño y Análisis de Experimentos. Editorial Limusa Wiley, México.         [ Links ]

Nitschke, M., and Costa, S. G. V. A. O. (2007). Biosurfactants in food industry. Trends in Food Science and Technology 18, 252-259.         [ Links ]

Onwosi, C. O., and Odibo, F. J. C. (2012). Effects of carbon and nitrogen sources on rhamnolipid biosurfactant production by Pseudomonas nitroreducens isolated from soil. World Journal of Microbiology and Biotechnology 28, 937-942.         [ Links ]

Palasota, J.A. and Stanley, N.D. 1991. Central composite experimental designs. Journal of Chemical Education 69, 560-563.         [ Links ]

Pereira, J. F., Gudina, E. J., Costa, R., Vitorino, R., Teixeira, J. A., Coutinho, J. A., and Rodrigues, L. R. (2013). Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel 111, 259-268.         [ Links ]

Rahman, K. S. M. and Gakpe, E. (2008). Production, characterization and applications of biosurfactants- Review. Biotechnology 7, 360-370.         [ Links ]

Rodrigues, L.R., Teixeira, J. A., and Oliveira, R. (2006a). Low-cost fermentative medium for biosurfactant production by probiotic bacteria. Biochemical Engineering Journal 32, 135-142.         [ Links ]

Rodrigues, L.R, Teixeira, J., Oliveira, R., and Van Der Mei, H. C. (2006b). Response surface optimization of the medium components for the production of biosurfactants by probiotic bacteria. Process Biochemistry 41, 1-10.         [ Links ]

Saikia, R. R., Deka, S., Deka, M., and Banat, I. M. (2012). Isolation of biosurfactant-producing Pseudomonas aeruginosa RS29 from oil-contaminated soil and evaluation of different nitrogen sources in biosurfactant production. Annals of Microbiology 62, 753-763.         [ Links ]

Singh, A., Van Hamme, J. D., and Ward, O. P. (2007). Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnology Advances, 99-121.         [ Links ]

Tepe, O., and Dursun, A. Y. (2014). Exo-pectinase production by Bacillus pumilus using different agricultural wastes and optimizing of medium components using response surface methodology. Environmental Science and Pollution Research, 1-10.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons