Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de ingeniería química
versión impresa ISSN 1665-2738
Rev. Mex. Ing. Quím vol.14 no.3 Ciudad de México sep./dic. 2015
Ingeniería de alimentos
Moisture sorption properties and storage stability conditions of a nutraceutical system microencapsulated by spray drying
Propiedades de adsorción de humedad y condiciones de estabilidad en almacenamiento de un sistema nutracéutico microencapsulado por secado por aspersión
L.M.A. Pavón-García1, R. Gallardo-Rivera2, A. Román-Guerrero2, H. Carrillo-Navas1, 3, M.E. Rodríguez-Huezo4, A.Y. Guadarrama-Lezama1, C. Pérez-Alonso*
1 Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón esq. Paseo Tollocan s/n, Col. Residencial Colón, C.P. 50120, Toluca, Estado de México, México. * Corresponding author. E-mail: cpereza@uaemex.mx Phone: +52 722 2173890; Fax: +52 722 2175109.
2 Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, C.P 09340, México, D.F., México.
3 Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, CP. 09340, México, D.F., México.
4 Departamento de Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Estado de México, México.
Received March 18, 2015;
Accepted September 29, 2015.
Abstract
The adsorption isotherms of a nutraceutical system microencapsulated by spray drying were determined at 20, 35 and 40 °C. Experimental data of the isotherms were fitted using the GAB and Caurie models and the integral thermodynamic functions (enthalpy and entropy) were estimated by the Clausius-Clapeyron equation. The Kelvin and Halsey equations were adequate for calculation of pore radius which varied from 0.67 to 8.15 nm. The point of maximum stability (minimum integral entropy) was found between 3.61 and 3.81 kg H2O/100 kg d.s. (corresponding to water activity, aw, of 0.19-0.37). Enthalpy-entropy compensation for the microcapsules showed two isokinetic temperatures. The first isokinetic temperature was observed at low moisture contents (< 3.8t kg H2O/100 kg d.s.) and was controlled by changes in the entropy of water, whereas the second isokinetic temperature was considered to be enthalpy-driven (3.81-20 kg H2O/100 kg d.s.).
Keywords: sorption isotherms, pore radius, minimum integral entropy, enthalphy-entropy compensation, water activity.
Resumen
Se determinaron las isotermas de adsorción de un sistema nutracéutico microencapsulado por secador por aspersión, a 20, 35 y 40°C. Los datos experimentales de las isotermas se ajustaron a los modelos de GAB y Caurie y las funciones termodinámicas integrales (entalpía y entropía) se estimaron con la ecuación de Clausius-Clapeyron. Las ecuaciones de Kelvin y Halsey se adecuaron para el cálculo del radio de poro, el cual se encontró de entre 0.67- 8.15 nm. El punto de máxima estabilidad (mínimo de entropía integral) se encontró entre 3.61 y 3.81 kg H2O/100 kg s.s. (correspondiente a la actividad de agua, aw, de 0.19-0.37). La compensación entalpía-entropía, presentó dos temperaturas isocinéticas. La primera temperatura isocinética, se encontró a bajo contenido de humedad (< 3.81 kg H2O/100 kg s.s.) y fue controlada por cambios en la entropía del agua, mientras que la segunda temperatura isocinética fue controlada por la entalpía (3.81-20 kg H2O/100 kg s.s.).
Palabras clave: isotermas de adsorción, radio de poro, mínimo de entropía integral, compensación entalpía-entropía, actividad de agua.
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgements
The authors acknowledge the financial support provided for this research by the Universidad Autónoma del Estado de México through grant 3457/2013CHT. Author Pavón-García received a study grant from Consejo Nacional de Ciencia y Tecnología (CONACYT).
References
Apostolopoulos, D. and Gilbert, S.G. (1990). Water sorption of coffee soluble by frontal inverse gas chromatography: thermodynamic considerations. Journal of food Science 55, 475-477. [ Links ]
Azuara, E. and Beristain, C.I. (2006). Enthalpic and entropic mechanisms related to water sorption of yogurt. Drying Technology 24, 1501-1507. [ Links ]
Bonilla, E., Azuara, E., Beristain, C.I. and Vernon-Carter, E.J. (2010). Predicting suitable storage conditions for spray-dried microcapsules formed with different biopolymer matrices. Food Hydrocolloids 24, 633-640. [ Links ]
Brunauer, S., Emmett, P.H. and Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society 60, 309-319. [ Links ]
Calzetta-Resio, A.N., Tolaba, M.P. and Suarez, C. (2000). Some physical and thermal characteristics of amaranth starch. Food Science and Technology International 6, 371-378. [ Links ]
Cano-Higuita, D.M., Villa-Vélez, H.A., Telis-Romero, J., Váquiro, H.A. and Nicoletti-Telis, V.R. (2015). Influence of alternative drying aids on water sorption of spray dried mango mix powders: A thermodynamic approach. Food and Bioproducts Processing 93, 19-28. [ Links ]
Carrillo-Navas, H., Cruz-Olivares, J., Varela-Guerrero, V., Alamilla-Beltrán, L., Vernon-Carter, E.J. and Pérez-Alonso, C. (2012). Rheological properties of a double emulsion nutraceutical system incorporating chia essential oil and ascorbic acid stabilized by carbohydrate polymerprotein blends. Carbohydrate Polymers 87, 1231-1235. [ Links ]
Caurie, M. (2005). The unimolecular character of the classical Brunauer, Emmett and Teller adsorption equation and moisture adsorption. International Journal of Food Science and Technology 40, 283-293. [ Links ]
Diosady, L.L., Rizvi, S.S. H., Cai, W. and Jagdeo, D. J. (1996). Moisture sorption isotherms of canola meals, and applications to packaging. Journal of Food Science 61, 204-208. [ Links ]
Dzul-Cauich, J.G., Lobato-Calleros, C., Pérez-Orozco, J.P., Alvarez-Ramírez, J. and Vernon-Carter, E.J. (2013). Stability of water-in-oil-in-water emulsions: Influence of the interfacial of properties of milk fat globule membrane. Revista Mexicana de Ingeniería Química 12, 425-436. [ Links ]
Erbaş;, M., Ertugay, M.F. and Certel, M. (2005). Moisture adsorption behaviour of semolina and farina. Journal of Food Engineering 69, 191-198. [ Links ]
Fletcher, A.J. and Thomas, K.M. (2000). Compensation effect for the kinetics of adsorption/desorption of gases/vapors on microporous carbon materials. Langmuir 16, 6253-6266. [ Links ]
Fontan, C., Chirife, J., Sancho, E. and Iglesias, H.A. (1982). Analysis of a model for water sorption phenomena in foods. Journal of Food Science 47, 1590-1594. [ Links ]
Guadarrama-Lezama, A.Y., Carrillo-Navas, H., Cruz-Olivares, J., Martínez-Vargas, S.L., Román-Guerrero and A., Pérez-Alonso, C. (2014). Determination of the minimum integral entropy, water sorption and glass transition temperature to establishing critical storage conditions of beetroot juice microcapsules by spray drying. Revista Mexicana de Ingeniería Química 13, 405-416. [ Links ]
Iglesias, H.A. and Chirife, J. (1982). Handbook of Food Isotherms. Academic Press, New York. [ Links ]
Krug, R.R., Hunter, W.G. and Grieger, R.A. (1976a). Enthalpy-entropy compensation 1. Some fundamental statistical problems associated with the Van't Hoff and Arrhenius data. The Journal of Physical Chemistry 80, 2335-2341. [ Links ]
Krug, R.R., Hunter, W.G. and Grieger, R.A. (1976b). Enthalpy-entropy compensation 2. Separation of the chemical from the statistical effect. The Journal of Physical Chemistry 80, 2342-2351. [ Links ]
Labuza, T.P. (1968). Sorption phenomena in foods. Food Technology 22, 263-272. [ Links ]
Labuza, T.P., Kaanane, A. and Chen, J.Y. (1985). Effect of temperature on the moisture sorption isotherms and water activity shift of two dehydrated foods. Journal of Food Science 50, 385-391. [ Links ]
Lang, K.W., McCune, T.D. and Steinberg, M.P. (1981). A proximity equilibration cell for rapid determination of sorption isotherms. Journal of Food Science 46, 936-938. [ Links ]
Leffler, J.E. (1995).The enthalpy-entropy relationship and its implications for organic chemistry. The Journal of Organic Chemistry 20, 1202-1231. [ Links ]
Lewicki, P.P. (1997). The applicability of the GAB model to food water sorption isotherms. International Journal of Food Science and Technology 32, 553-557. [ Links ]
Lewicki, P.P. (2004). Water as the determinant of food engineering properties: a review. Journal of Food Engineering 61, 483-495. [ Links ]
McLaughlin, C.P. and Magee, T.R.A. (1998). The determination of sorption isotherm and the isosteric heats of sorption for potatoes. Journal of Food Engineering 35, 267-280. [ Links ]
McMinn, W.A.M., Al-Muhtaseb, A.H. and Magee, T.R.A. (2004). Moisture sorption characteristics of starch gels. Part II: thermodynamic properties. Journal of Food Process Engineering 27, 213-227. [ Links ]
McMinn, W.A.M. and Magee, T.R.A. (2003). Thermodynamic properties of moisture sorption of potato. Journal of Food Engineering 60, 157-165. [ Links ]
Mitropoulos, A.Ch. (2008). The Kelvin equation. Journal of Colloid and Interface Science 317, 643-648. [ Links ]
Miyata, T., Endo, A., Ohmori, T., Akiya, T. and Nakaiwa, M. (2003). Evaluation of pore size distribution in boundary region of micropore and mesopore using gas adsorption method. Journal of Colloid and Interface Science 262, 116-125. [ Links ]
Nunes, R.V. and Rotstein, E. (1991). Thermodynamics of the water-food stuff equilibrium. Drying Technology 9, 113-117. [ Links ]
Pavón-García, L.M.P., Pérez-Alonso, C., Orozco-Villafuerte, J., Pimentel-González, D.J., Rodríguez-Huezo, M.E. and Vernon-Carter, E.J. (2011). Storage stability of the natural colourant from Justicia spicigera microencapsulated in protective colloids blends by spray-drying. International Journal of Food Science and Technology 46, 1428-1437. [ Links ]
Pérez-Alonso, C., Báez-González, J.G., Beristain, C.I., Vernon-Carter, E.J. and Vizcarra-Mendoza, M.G. (2003). Estimation of the activation energy of carbohydrate polymers blends as selection criteria for their use as wall material for spray-dried microcapsules. Carbohydrate Polymers 53, 197-203. [ Links ]
Pérez-Alonso, C., Beristain, C.I., Lobato-Calleros, C., Rodríguez-Huezo, M.E. and Vernon-Carter, E.J. (2006). Thermodynamic analysis of the sorption isotherms of pure and blended carbohydrate polymers. Journal of Food Engineering 77, 753-760. [ Links ]
Ramírez-Miranda, M., Cruz y Victoria, M.T., Vizcarra-Mendoza, M.G. and Anaya-Sosa, I. (2014). Determination of moisture sorption isotherms and their thermodynamics properties of nixtamalized maize flour. Revista Mexicana de Ingeniería Química 13, 165-178. [ Links ]
Rizvi, S.S.H. (1986). Thermodynamic properties of foods in dehydration. In N.A. Rao, S.S.A. Rizvi (Eds.), Engineering Properties of Foods (pp. 133-214). Marcel Dekker Inc, New York. [ Links ]
Rodea-González, D.A., Cruz-Olivares, J., Román-Guerrero, A., Rodríguez-Huezo, M.A., Vernon-Carter, E.J. and Pérez-Alonso, C. (2012). Spray-dried encapsulation of chia essential oil (Salvia hispanica L.) in whey protein concentrate polysaccharide matrices. Journal of Food Engineering 111, 102-109. [ Links ]
Rosa, G.S., Moraes, M.A. and Pinto, L.A.A. (2010). Moisture sorption properties of chitosan. LWT-Food Science and Technology 43, 415-420. [ Links ]
Sánchez-Sáenz, E.O., Pérez-Alonso, C., Cruz-Olivares, J., Román-Guerrero, A., Báez-González, J.G. and Rodríguez-Huezo, M.E. (2011). Establishing the most suitable storage conditions for microencapsulated allspice essential oil entrapped in blended biopolymers matrices. Drying Technology 29, 863-872. [ Links ]
Silva, E.K., Fernandes, R., Vilela-Borges, S., Alvarenga-Botrel, D. and Queiroz, F. (2014). Water adsorption in Rosemary essential oil microcapsules: kinetics, thermodynamics and storage conditions. Journal of Food Engineering 140, 39-45. [ Links ]
Silveira R.C., Zapata C.P., Ferreira, L.D., Gomes, A. and Cladera-Olivera, F. (2010). Adsorption isotherms of pinhao (Araucaria angustifolia seeds) starch and thermodynamic analysis. Journal of Food Engineering 100, 468-473. [ Links ]
Singh, R.R.B., Rao, K.H., Anjaneyulu, A.S.R. and Patil, G.R. (2001). Moisture sorption properties of smoked chicken sausages from spent hen meat. Food Research International 34, 143-148. [ Links ]
Singh, R.R.B., Rao, K.H., Anjaneyulu, A.S.R. and Patil, G.R. (2006). Water desorption characteristics of raw goat meat: effect of temperature. Journal of Food Engineering 75, 228-236. [ Links ]
Sonwane, C.G., Bhatia, K. (2000). Characterization of pore size distributions of mesoporous materials from adsorption isotherms. The Journal of Physical Chemistry B 104, 9099-9110. [ Links ]
Spada, J.C., Noreña, C.P.Z., Marczak, L.D.F. and Tessaro, I.C. (2013). Water adsorption isotherms of microcapsules with hydrolyzed pinhao (Araucaria angustlfolia seeds) starch as wall material. Journal of Food Engineering 114, 64-69. [ Links ]
Velázquez-Gutiérrez, S.K., Figueira, A.C., Rodríguez-Huezo, M.E., Román-Guerrero, A., Carrillo-Navas, H. and Pérez-Alonso, C. (2015). Sorption isotherms, thermodynamic properties and glass transition temperature of mucilage extracted from chia seed (Salvia hispanica L.). Carbohydrate Polymers 121, 411-419. [ Links ]
Vernon-Carter, E.J., Gómez, S.A., Beristain, C.I., Mosqueira, G., Pedroza-Islas, R. and Moreno-Terrazas, R.C. (1996). Color degradation and coalescence kinetics of Aztec marigold oleoresin-in-water emulsions stabilized by mesquite or arabic gums and their blends. Journal of Texture Studies 27, 625-641. [ Links ]
Vernon-Carter, E.J., Pedroza-Islas, R. and Beristain, C.I. (1998). Stability of capsicum annuum oleoresin-in-water emulsions containing prosopis and acacia gums. Journal of Texture Studies 29, 553-567. [ Links ]
Viveros-Contreras, R., Téllez-Medina, D.I., Perea-Flores, M.J., Alamilla-Beltrán, L., Cornejo-Mazón, M., Beristain-Guevara, C.I., Azuara-Nieto, E. and Gutíerrez-López, G.F. (2013). Encapsulation of ascorbic acid into calcium alginate matrices through coacervation coupled to freezing-drying. Revista Mexicana de Ingeniería Química 12, 29-39. [ Links ]