Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de ingeniería química
versión impresa ISSN 1665-2738
Rev. Mex. Ing. Quím vol.14 no.3 Ciudad de México sep./dic. 2015
Biotecnología
Enhancement of phenylethanoid glycosides biosynthesis in Castilleja tenuiflora Benth. Shoot cultures with cell wall oligosaccharides from Fusarium oxysporum f. sp. lycopersici Race 3
Estimulación de la biosíntesis de los feniletanoides glicosilados en cultivos de brotes de Castilleja tenuiflora Benth. Con oligosacáridos de pared celular de Fusarium oxysporum f. sp. lycopersici Raza 3
B.A. Cardenas-Sandoval1, L. Bravo-Luna1, K. Bermúdez-Torres1, J.L. Trejo-Espino1, A. Zamilpa2, G. Trejo-Tapia 1*
1 Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, P. O. Box 24, 62730, Yautepec, Morelos, México. * Corresponding author. E-mail: gttapia@ipn.mx Tel.+52-735-39-420-20.
2 Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec, Morelos, 62790, México.
Received April 8, 2015;
Accepted July 14, 2015.
Abstract
Phenylethanoid glycosides (PhGs) are promising natural products for the treatment of chronic diseases because of their wide range of biological activities. Biotic stress as pathogen attack (fungi) may stimulate the synthesis of PhGs through activation of phenylalanine ammonia-lyase (PAL). Castilleja tenuiflora Benth. (Orobanchaceae) in vitro cultures are alternative sources of PhGs, however in that conditions, cultures have a diminished synthesis of these compounds. To increase the yields of PhGs, the identification of factors affecting their biosynthesis is required. Here, weshow that elicitation with cell wall oligosaccharides (CWOs) from Fusarium oxysporum f. sp. lycopersici race 3 (Hyphomycetes) stimulates biosynthesis of PhGs by increasing the activity of PAL. Upon elicitation with CWOs (13 μg/mL) the production of PhGs was enhanced by 5-fold compared with untreated control. The maximum PAL activity in shoots cultured under CWOs elicitation were also increased. Elicitation did not affect the shoot growth (length and biomass) but induced chlorosis, and delayed root formation of C. tenuiflora shoots. Our results demonstrate that elicitation with CWOs increases PhGs biosynthesis in C. tenuiflora shoot culture.
Keywords: PAL, verbascoside, isoverbascoside, Castilleja tenuiflora, Fusarium oxysporum f. Sp licopersici race 3.
Resumen
Los feniletanoides glicosilados (FEGs) son sustancias naturales que pueden utilizarse para el tratamiento de enfermedades crónicas debido a su amplia gama de actividades biológicas. Un estrés biótico como el ataque de patógenos (hongos) a plantas, puede estimular la síntesis de FEGs a través de la activación de la enzima fenilalanina amoníaco-liasa (PAL). Los brotes de Castilleja tenuiflora Benth. (Orobanchaceae) cultivados in vitro producen FEGs, sin embargo, en esas condiciones se presenta una disminución en la síntesis de estos compuestos. Para aumentar los rendimientos de los FEGs se requiere la identificación de los factores que afectan a su biosíntesis. En este trabajo se muestra que la elicitación con oligosacáridos de pared celular (OPCs) de Fusarium oxysporum f. sp. lycopersici raza 3 (Hyphomycetes) estimula la biosíntesis de FEGs aumentando la actividad de la enzima PAL. La elicitación de los brotes de C. tenuiflora con OPCs (13 μg/mL), aumento la producción de FEGs 5 veces en comparación con el control y, provoco un aumento en la actividad máxima de la enzima PAL. Por otro lado, la elicitación no afectó el crecimiento de los brotes (longitud y biomasa), pero si indujo clorosis y retardo la formación de raíces. Nuestros resultados demuestran que la elicitación con OPCs incrementa la biosíntesis de FEGs en cultivos de brotes de C. tenuiflora.
Palabras clave: PAL, verbascósido, Castilleja tenuiflora , elicitación fungica, Fusarium oxysporum f. Sp licopersici raza 3.
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgements
B.A. Cardenas-Sandoval is indebted to Consejo Nacional de Ciencia y Tecnología (CONACYT-MÉXICO) and PIFI-IPN for the fellowship awarded as graduate student. Financial support from Secretaría de Investigación y Posgrado del IPN (grant 20140231) and by Consejo Nacional de Ciencia y Tecnología-México (grant 220007).
References
Arencibia, A. D., Bernal, A., Zayas, C., Carmona, E., Cordero, C., González, G., García, R. and Santana, I. (2012). Hydrogen peroxide induced phenylpropanoids pathway eliciting a defensive response in plants micropropagated in Temporary Immersion Bioreactors (TIBs). Plant Science 195, 71-79. [ Links ]
Boari, A. and Vurro, M. (2004). Evaluation of Fusarium spp. and other fungi as biological control agents of broomrape (Orobanche ramosa). Biological Control 30, 212-219. [ Links ]
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248-254. [ Links ]
Cárdenas-Sandoval, B.A., López-Laredo, A.R., Martínez-Bonfil, B.P., Bermúdez-Torres, K. and Trejo-Tapia, G. (2012). Advances in the phytochemistry of Cuphea aequipetala, C. aequipetala var. hispida and C. lanceolata: extraction and quantification of phenolic compounds and antioxidant activity. Revista Mexicana de Ingeniería Química 11, 401-413. [ Links ]
Cheng, X., Wei, T., Guo, B., Ni, W. and Liu, C.-Z. (2005). Cistanche deserticola cell suspension cultures: Phenylethanoid glycosides biosynthesis and antioxidant activity. Process Biochemistry 40, 3119-3124. [ Links ]
Cheng, X., Zhou, H.-Y., Cui, X., Ni, W. and Liu, C.-Z. (2006). Improvement of phenylethanoid glycosides biosynthesis in Cistanche deserticola cell suspension cultures by chitosan elicitor. Journal of Biotechnology 121, 253-260. [ Links ]
De Wit, J.G.M.P., Hofman, J.E., and Aarts J.M.M.J.G. (1984). Origen of specific elicitors of chlorosis and necrosis occurring in intracellular fluids of compatible interactions of Cladosporium fulvum (syn. Fulvia fulva) and tomato. Physiologial Plant Phatology 24, 17-23. [ Links ]
Dubois, M., Gilles, K.A. Hamilton, J.K. Rebers, P.A. and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28, 350- 356. [ Links ]
Dutsadee, C. and Nunta, C. (2008). Induction of peroxidase, scopoletin, phenolic compounds and resistance in Hevea brasiliensis by elicitin and a novel protein elicitor purified from Phytophthora palmivora. Physiological and Molecular Plant Pathology 72, 179-187. [ Links ]
El Modafar, C., Tantaoui, A. and El Boustani, E.-S. (2001). Differential induction of phenylalanine ammonia-lyase activity in date palm roots in response to inoculation with Fusarium oxysporum f. sp. albedinis and to elicitation with fungal wall elicitor. Journal of Plant Physiology 158, 715-722. [ Links ]
Funari, C. S., Gullo, F.P., Napolitano, A., Carneiro, R.L., Mendes-Giannini, M.J.S., Fusco-Almeida, A. M., Piacente, S., Pizza, C. and Silva, D. H. S. (2012). Chemical and antifungal investigations of six Lippia species (Verbenaceae) from Brazil. Food Chemistry 135, 2086-2094. [ Links ]
Gamborg, O. L., Miller, R. A. and Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research 50, 150-158. [ Links ]
Gómez, Y. A. (2011). Identificación estructural de compuestos mayoritarios en plantas silvestres de Castilleja tenuiflora y su acumulacion en cultivos in vitro de raíces. Tesis de Doctorado en Ciencias en Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Yautepec, Morelos, México. [ Links ]
Gómez-Aguirre, Y. A., Zamilpa, A., González, M. and Trejo-Tapia, G. (2012). Adventitious root cultures of Castilleja tenuiflora Benth. as a source of phenylethanoid glycosides. Industrial Crops and Products 36, 188-195. [ Links ]
Gyurkovska, V., Alipieva, K., Maciuk, A., Dimitrova, P., Ivanovska, N., Haas, C., Bley, T. and Georgiev, M. (2011). Anti-inflammatory activity of Devil's claw in vitro systems and their active constituents. Food Chemistry 125, 171-178. [ Links ]
Jouili, H., Bouazizi, H. and El Ferjani, E. (2011). Plantperoxidases: biomarkers of metallic stress. Acta Physiologiae Plantarum 33, 2075-2082. [ Links ]
Kollarova, K., Liskova, D. and Lux, A. (2007). Influence of galactoglucomannan oligosaccharides on root culture of Karwinskia humboldtiana. Plant Cell, Tissue and Organ Culture 91, 9-19. [ Links ]
Kollárová, K., Richterová, D., Slováková, L., Henselová, M., Capek, P. and Lisková, D. (2009). Impact of galactoglucomannan oligosaccharides on elongation growth in intact mung bean plants. Plant Science 177, 324-330. [ Links ]
Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In: Methods in Enzymology, vol. 148 (R.D. Lester Packer ed.), pp. 350-382 Academic Press. [ Links ]
López-Laredo, A., Gómez-Aguirre, Y., Medina-Pérez, V., Salcedo-Morales, G., Sepúlveda-Jiménez, G. and Trejo-Tapia, G. (2012). Variation in antioxidant properties and phenolics concentration in different organs of wild growing and greenhouse cultivated Castilleja tenuiflora Benth. Acta Physiologiae Plantarum 34, 2435-2442. [ Links ]
Lu, C.-t. and Mei, X.-g. (2003). Improvement of phenylethanoid glycosides production by a fungal elicitor in cell suspension culture of Cistanche deserticola. Biotechnology Letters 25, 1437-1439. [ Links ]
Martínez-Bonfil, B., Salcedo-Morales, G., López-Laredo, A., Ventura-Zapata, E., Evangelista-Lozano, S. and Trejo-Tapia, G. (2011). Shoot regeneration and determination of iridoid levels in the medicinal plant Castilleja tenuiflora Benth. Plant Cell, Tissue and Organ Culture 107, 195-203. [ Links ]
Medina, V. (2011). Efecto de la reducción de nitrógeno en el metabolismo de compuestos fenólicos en brotes de Castilleja tenuiflora Benth. cultivados en biorreactor de inmersión temporal. Tesis de Maestría en Ciencias en Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Yautepec, Morelos, México. [ Links ]
Moreno-Escobar, J. A., Bazaldúa, S., Villarreal, M. L., Bonilla-Barbosa, J. R., Mendoza, S. and Rodríguez-López, V. (2011). Cytotoxic and antioxidant activities of selected Lamiales species from México. Pharmaceutical Biology 49, 1243-1248. [ Links ]
Morkunas, I. and Gmerek, J. (2007). The possible involvement of peroxidase in defense of yellow lupine embryo axes against Fusarium oxysporum. Journal of Plant Physiology 164, 185-194. [ Links ]
Ndambi, B., Cadisch, G., Elzein, A. and Heller, A. (2011). Colonization and control of Striga hermonthica by Fusarium oxysporum f. sp. strigae, a mycoherbicide component: An anatomical study. Biological Control 58, 149-159. [ Links ]
Nikonorova, A. K., Egorov, C. A., Galkina, T. G., Grishin, E. V. and Babakov, A. V. (2009). Antifungal activity of phenolic glicoside verbascoside from Plantago major seeds. Mikologiya I Fitopatologiya 43, 52-57. [ Links ]
Nita-Lazar, M., Heyraud, A., Gey, C., Braccini, I. and Lienart, Y. (2004). Novel oligosaccharides isolated from Fusarium oxysporum L. rapidly induce PAL activity in Rubus cells. Acta Biochimica Polonica 51, 625-634. [ Links ]
Orozco-Cárdenas, M. L., Narváez-Vásquez, J. and Ryan, C. A. (2001). Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. The Plant Cell 13, 179-191. [ Links ]
Ortega García, J. G. (2010). Diagnóstico de hongos fitopatógenos de jitomate y efecto de Trichoderma asperellum Tc74 sobre Fusarium spp. Tesis de maestría en Ciencias en Manejo Agroecológico de Plagas y Enfermedades, Instituto Politécnico Nacional, Yautepec, Morelos, México. [ Links ]
Oyourou, J. N., Combrinck, S., Regnier, T. and Marston, A. (2013). Purification, stability and antifungal activity of verbascoside from Lippia javanica and Lantana camara leaf extracts. Industrial Crops and Products 43, 820-826. [ Links ]
Pettit, G. R., Numata, A., Takemura, T., Ode, R. H., Narula, A. S., Schmidt, J. M., Cragg, G. M. and Pase, C. P. (1990). Antineoplastic agents, 107. Isolation of acteoside and isoacteoside from Castilleja linariaefolia. Journal of Natural Products 53, 456-458. [ Links ]
Sánchez, P. M., Villarreal, M. L., Herrera-Ruiz, M., Zamilpa, A., Jiménez-Ferrer, E. and Trejo-Tapia, G. (2013). In vivo anti-inflammatory and anti-ulcerogenic activities of extracts from wild growing and in vitro plants of Castilleja tenuiflora Benth. (Orobanchaceae). Journal of Ethnopharmacology 150, 1032-1037. [ Links ]
Sánchez-Rangel, J.C., Benavides, J. and Jacobo-Velázquez, D.A. (2014). Abiotic stress based bioprocesses for the production of high value antioxidant phenolic compound in plants: an overview. Revista Mexicana de Ingeniería Química 13, 49-61. [ Links ]
Singh, N., Shukla, N., Singh, P., Sharma, R., Rajendran, S. M., Maurya, R. and Palit, G. (2010). Verbascoside isolated from Tectona grandis mediates gastric protection in rats via inhibiting proton pump activity. Fitoterapia 81, 755-761. [ Links ]
Stasolla, C. and Yeung, E. C. (2007). Cellular ascorbic acid regulates the activity of major peroxidases in the apical poles of germinating white spruce (Picea glauca) somatic embryos. Plant Physiology and Biochemistry 45, 188-198. [ Links ]
Trejo-Tapia, G., Rosas-Romero, G., López-Laredo, A. R., Bermuídez-Torres, K. and Zamilpa, A. (2012). In vitro organ cultures of the cancer herb Castilleja tenuiflora Benth. as potential sources of iridoids and antioxidant compounds. In: Biotechnological Production of Plant Secondary Metabolites, (I. Orhan ed.), Pp. 87-106 Bentham Science Publishers. [ Links ]
Yan, Q., Shi, M., Ng, J. and Wu, J. Y. (2006). Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Salvia miltiorrhiza hairy roots. Plant Science 170, 853-858. [ Links ]
Yuan, Y.-J., Li, C., Hu, Z.-D., Wu, J.-C. and Zeng, A.-P. (2002). Fungal elicitor-induced cell apoptosis in suspension cultures of Taxus chinensis var. mairei for taxol production. Process Biochemistry 38, 193-198. [ Links ]
Zhao, J., Davis, L. C. and Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances 23, 283333. [ Links ]