SciELO - Scientific Electronic Library Online

 
vol.14 número3Modelado y simulación dinámica del aerocondensador de una central de ciclo combinadoInfluencia de los defectos puntuales sobre las propiedades estructurales y electrónicas de nanotubos de BN funcionalizados con quitosano índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.14 no.3 Ciudad de México sep./dic. 2015

 

Materiales

 

Structural and raman scattering studies of ZnO Cu nanocrystals grown by spray pyrolysis

 

Estudios estructurales y de dispersión de raman de nanocristales de ZnO-Cu crecidos por spray pirólisis

 

B. El Filali1*, T. V. Torchynska2, A.I. Díaz Cano1, M. Morales Rodríguez1

 

1 UPIITA-Instituto Politécnico Nacional, México D.F.07738, México. Corresponding author. E-mail: braelf@hotmail.com

2 ESFM-Instituto Politécnico Nacional, México D.F.07738, México.

 

Received October 29, 2014;
Accepted May 21, 2015.

 

Abstract

The paper presents a simple method to produce the ZnO nanocrystals (NCs) doped with Cu atoms by means of the spray pyrolysis using Zinc acetylacetonate hydrate, copper acetylacetonate and chloroform as solvent. ZnO nanocrystals with 5?20 wt % Cu were deposited on the glass substrates at 400°C using the spray pyrolysis technique and then thermal annealed at 500°C for 2 hours in ambient atmosphere. The crystallinity and morphology of the films were characterized by SEM, XRD and Raman scattering methods. The XRD study indicates that ZnO films have a hexagonal wurtzite structure and the Cu addition enhances the preferential orientation along the (100). The Raman scattering spectrum of Cu doped ZnO nanocrystals thermal annealed at 500°C for 2 hours in ambient atmosphere demonstrates a set of Raman peaks related to the vibrational modes in ZnO for small Cu concentration (5-10%). In ZnO nanocrystals with higher Cu concentrations (15-20%) the CuO phase was detected by the XRD and Raman scattering methods. It was shown that the quality of ZnO NC films can be improved by copper doping with concentration less than 10%.

Keywords: zinc oxide, SEM, XRD, Raman scattering.

 

Resumen

Este artículo presenta un método simple para producir nanoestructuras de ZnO con la inclusión de nanocristales metálicas de Cu por medio de spray pirolisis utilizando hidrato de acetilacetonato de zinc, acetilacetonato de cobre y cloroformo como disolvente. Las nanocristales de ZnO con un peso atómico de 5-20% de Cu se depositaron a una temperatura de 400°C sobre los sustratos de vidrio utilizando la técnica de spray pirolisis, después a las muestras se le aplico tratamiento térmico a 500°C en atmósfera ambiente. La cristalinidad y la morfología de las películas se caracterizaron por las técnicas de SEM, XRD y dispersión Raman. El estudio XRD indica que las películas de ZnO tienen una estructura de wurtzita hexagonal y que la adición de Cu mejora la orientación preferencial a lo largo de (100). El espectro de dispersión Raman de las muestras de ZnO dopadas con Cu después del tratamiento térmico a 500°C en atmósfera ambiente demuestran un conjunto de picos relacionados con los modos activos Raman de las nanopartículas de ZnO a niveles bajos de concentración de Cu (5-10%). En las nanocristales de ZnO con alta concentración de Cu (15-20%) se detectó la presencia de la fase secundaria de CuO por la técnica de difracción de rayos X. Además se demostró que la calidad de las nanopartículas de ZnO se puede mejorar con un nivel de dopaje con Cu inferior al 10%.

Palabras clave: óxido de zinc, SEM, XRD, la dispersión Raman.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

Ashkenov, N., Mbenkum, B.N., Bundesmann, C., Riede, V., Lorenz, M., Spemann, D., Kaidashev, E.M., Kasic, A., Schubert, M., Grundmann, M., Wagner, G., Neumann, H., Darakchieva, V., Arwin, H. and Monemar, B. (2003). Zinc Oxide Bulk, Thin Films and Nanostructures. Journal of Applied Physics 93, 126.         [ Links ]

Aklilu, M. and Tai, Y. (2013). Self-assembled monolayers assisted thin film growth of aluminum doped zinc oxide by spray pyrolysis method. Applied Surface Science 270, 648-654.         [ Links ]

Bae, H.Y. and. Choi, G. M (1999. Electrical and reducing gas sensing properties of ZnO and ZnO-CuO thin films fabricated by spin coating method. Sensors and Actuators, B55, 47-54.         [ Links ]

Benharrats, F., Zitouni, K., Kadri, A. and Gil, B. (2010). Determination of piezoelectric and spontaneous polarization fields in CdxZn1-x/ZnO quantum wells grown along the polar (0001) direction. Superlattices Microstructures 47, 592-596.         [ Links ]

Chowa, L., Lupana, O., Chaia, G., Khallaf, H., Ono, L.K., Roldan, C.B., Tiginyanu, I.M., Ursaki, V.V., Sontea, V. and A. Schulte. (2013). Synthesis and characterization of Cu-doped ZnO one-dimensional structures for miniaturized sensor applications with faster response. Sensors and Actuators A 189, 399-408.         [ Links ]

Chrzanowski, J. and Irwin, J.C (1989). Raman scattering from cupric oxide. Solid State Communications 70, 11-14.         [ Links ]

Diaz, C.A.I., El Filali, B., Torchynska, T.V. and Casas, E.J.L. (2013). Structure and emission transformations in ZnO nanosheets at thermal annealing. Journal of Physics and Chemistry of Solids 74, 431-435        [ Links ]

Diaz, C.A.I., El Filali, B., Torchynska, T.V. and Casas, E.J.L. (2013). ??White?? emission of ZnO nanosheets with thermal annealing. Physica E 51, 24-28.         [ Links ]

Dojalisa, S., Panda, N.R. Acharya, B.S. and Panda, A.K. (2014). Microstructural and optical investigations on sonochemically synthesized Cu doped ZnO nanobricks. Ceramics International 40, 11041-11049.         [ Links ]

El Filali B., Torchynska, T.V. and Diaz Cano, A.I. (2015). Photoluminescence and Raman scattering study in ZnO:Cu nanocrystals. Journal of Luminescence 161, 25-30.         [ Links ]

Ghosh, T., Dutta, M., Mridha, S. and Basak, D. (2009). Effect of Cu doping in the structural, electrical, optical, and optoelectronic properties of sol-gel ZnO thin film. Journal of the Electrochemical Society 156, H285.         [ Links ]

Iqbal, Javed, Tariq, J., Shafiq, M., Arshad, A., Naeem, A., Saeed, B. and Ronghai. B. (2014). Synthesis as well as Raman and optical properties of Cu-doped ZnO nanorods prepared at low temperature. Ceramics International 40, 2091-2095.         [ Links ]

Kahraman, S., Cakmak, H.M., Cetinkaya, S., Bayansal, F., Cetinkara, H.A. and Guder, H.S. (2013). Characteristics of ZnO thin films doped by various elements. Journal of Crystal Growth 363, 86-92.         [ Links ]

Kamalianfar, A., Halim, S.A., and ak, A.K. (2014). Synthesis of ZnO/Cu micro and nanostructures via a vapor phase transport method using different tube systems. Ceramics International 40, 3193-3198.         [ Links ]

Kim, G.H., Kim, D .L, Ahn, B. D., Lee, S. Y. and Kim, H. J. (2009). Investigation on doping behavior of copper in ZnO thin film. Microelectronics Journal 40, 272.         [ Links ]

Kulyk, B., Sahraoui, B., Figà, V., Turko, B., Rudyk, V. and Kapustiansky, A. (2009). Effect of Cu on the microstructure and electrical properties of Cu/ZnO thin films. Journal of Alloys Compounds 481, 819-825.         [ Links ]

Ligang, Ma., Shuyi, Ma., Haixia, C., Xiaoqian and A., Xinli H. (2011). Microstructures and optical properties of Cu-doped ZnO. Applied Surface Science 257, 10036-10041.         [ Links ]

Luna, S. R.A., Zermeño, R.B.B., Moctezuma, E., Contreras, B. R.E., Leyva1, E. and López B.M.A. (2013). Photodegradation of omeprazole in aqueous solution using TiO2 as catalyst. Revista Méxicana de Ingeniería Química 12, 85-95.         [ Links ]

Lupan, O., Pauporte,T., Viana, B. and Aschehoug, P. (2011). Electrodeposition of Cu-doped ZnO nanowire arrays and heterojunction formation with p-GaN for color tunable light emitting diode applications. Electrochimica Acta 56, 10543-10549.         [ Links ]

Núñez, S.M.C., García-Suárez, F.J., Gutiérrez, M.F.M., Sánchez, R. M. and Bello, P.L.A.(2011). Some intrinsic and extrinsic factors of acetylated starches: morphological, physicochemical and structural characteristics. Revista Méxicana de Ingeniería Química 10, 501-512.         [ Links ]

Peng, X., Xu, J.and Zang. X. (2008). Structural and PL properties of Cu-doped ZnO films. Joural of Luminescence 128, 297.         [ Links ]

Saidani, T., Zaabat, M., Salah, M.A., Ben aboud, A., Benzitouni, S. and Azzedine Boudine. (2014). Influence of annealing temperature on the structural, morphological and optical properties of Cu doped ZnO thin films deposited by the sol-gel method. Superlattices and Microstructures 75, 47-53.         [ Links ]

Shinde, S.S., Bhosale, C. H. and Rajpure, K. Y. (2013). Photo electrochemical properties of highly mobilized Li-doped ZnO thin films. Journal of Photochemistry and Photobiology B. Biology 120, 1-9.         [ Links ]

Soto, B.M.A., Sánchez C. V.M and Trujillo, C.M.E.. (2014). Caracterización de películas serigrafías de TiO2/alginato. Revista Mexicana de Ingeniería Química 13, 227-236.         [ Links ]

Tang, L., Yang, S., Wang, Z. and Zhou, B. (2013). Synthesis of hydrophobic ZnO branches by phase transfer-based solution method. Ceramics International 39, 5771-5776.         [ Links ]

Tarwal, N.L., Gurav, K.V. and Mujawar, S.H. (2014). Photoluminescence and photoelectrochemical properties of the spray deposited copper doped zinc oxide thin films. Ceramics International 40, 7669-7677.         [ Links ]

Torchynska T.V., Douda, J., Ostapenko, S.S., Jimenez-Sandoval, S. Phelan, C., Zajac, A., Zhukov, T. and Sellers, T. (2008). Peculiarities of Raman scattering in bioconjugated CdSe/ZnS quantum dots. it Journal of Non-Crystaline Solids 354, 2885.         [ Links ]

Torchynska, T. V. and El Filali, B. (2014). Size dependent emission stimulation in ZnO nanosheets. Journal of Luminescence 149, 54-60.         [ Links ]

Xia, C., Wang, F. and Hu, C. (2014). Theoretical and experimental studies on electronic structure and optical properties of Cu-doped ZnO. Journal of Alloys and Compounds 589, 604-608.         [ Links ]

Yan, Y., M.M. Al-Jassim, S.H. Wei. (2006). Doping of ZnO by group-IB elements. Applied Physics Letters 89, 181-912.         [ Links ]

Yu, T., Zhao, X., Shena, Z.X., Wu, Y.H. and Su, W.H. (2004). Investigation of individual CuO nanorods by polarized micro-Raman scattering. Journal of Crystal Growth 268, 590-595.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons