Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de ingeniería química
versión impresa ISSN 1665-2738
Rev. Mex. Ing. Quím vol.14 no.3 Ciudad de México sep./dic. 2015
Polímeros
Degradation study of poly(lactic-L(+)-co-glycolic acid) in chloroform
Estudio de la degradación de poli(ácido-l(+)-láctico-co-glicólico) en cloroformo
C. Rueda1, I. Vallejo1, M. Corea1*, E. G. Palacios1, I. Chairez2
1 Instituto Politécnico Nacional, ESIQIE, UPALM, Zacatenco, Gustavo A. Madero, México D.F, C.P. 07738. * Autor para la correspondencia. E-mail: mcoreat@yahoo.com.mx Tel. 55-57-29-6000, Ext 55264.
2 Instituto Politécnico Nacional, UPIBI, Av. Acueducto S/N. Barrio la Laguna Ticomán, Gustavo A. Madero, México D.F. C.P. 07430.
Recibido 16 de Abril, 2014;
Aceptado 15 de Julio, 2015.
Abstract
Polymer/solvent interaction has been of great interest in many fields, such as scaffold processing, polymer recycling and drug delivery system (DDS), among others. It has been reported that the effect of solvent on polymers could determine the final physical and chemical properties in specific applications. Thus, this article describes a degradation study of poly(lactic-L(+)-co-glycolic acid), or PLGA, in the presence of chloroform. The PLGA polymer was synthetized by ring opening polymerization (ROP). Five lactic/glycolic acid volumetric ratios (90/10, 80/20, 70/30, 60/40 and 50/50) were used to prepare PLGA. Copolymers were characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) and static light scattering (SLS). Copolymer degradation was induced using chloroform as the solvent. FTIR was used to follow variations on the functional groups of copolymers during the PLGA degradation process. The study was conducted using the evidence provided from the modifications of OH wavelength bands (3000-3500 cm-1) obtained from FTIR. A viable reaction scheme to explain the degradation of the copolymer was developed based on the monomolecular constant reaction rates generated by the decomposition dynamic of OH groups.
Keywords: poly(lactic-L(+)-co-glycolic acid), kinetic study, chloroform, degradation, biopolymers.
Resumen
La interacción polímero/solvente es de mucho interés en diversas áreas, como la ingeniería de tejidos, el reciclado de plásticos y la industria de los sistemas de liberación de fármacos, entre otras. Se ha reportado que el efecto del solvente sobre los polímeros puede determinar las propiedades físicas y químicas en aplicaciones específicas. Así, este artículo describe un estudio sobre la degradación del poli(ácido-L(+)-láctico-co-glicólico), PLGA, usando cloroformo como medio de degradación. El PLGA se sintetizó por polimerización por apertura de cadena en 5 relaciones volumétricas de ácido láctico/glicólico (90/10, 80/20, 70/330, 60/40, 50/50). Estos co-polímeros se caracterizaron usando microscopía electrónica de barrido, calorimetría diferencial de barrido, espectroscopia de infrarrojo por trasformada de Fourier y dispersión estática de luz. En la degradación se utilizó cloroformo como solvente, en donde las variaciones de los grupos funcionales se analizaron mediante espectroscopia de infrarrojo. El estudio se realizó a partir de la evidencia proporcionada por las modificaciones de las bandas características de los grupos OH (3000-3500 cm-1). Con estos resultados se propuso un esquema de reacción de PLGA, basado en las constantes cinéticas de degradación uni-moleculares, obtenidas en la dinámica de descomposición de los grupos OH.
Palabras clave: poli(ácido-L(+) láctico-co-glicólico), estudio cinético, cloroformo, degradación, biopolímeros.
DESCARGAR ARTÍCULO EN FORMATO PDF
References
Albertsson, A. C., Varma, I. K. (2003). Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 4, 1466-1486. [ Links ]
Bettelheim, F. A., Brown, W. H., Farrell, S. O. (2010). Introduction to General Organic and Biochemistry. BROOKS/COLE CENAGE Learning, Belmont. [ Links ]
Buttafoco, L., Bokos, N. P., Engbers-Buijtenhuijs, P. (2006). Porous hybrid structures based on P(DLLA-co-TMC) and collagen for tissue engineering of small-diameter blood vessels. Journal of Biomedical Materials Research 79, 425-434. [ Links ]
Chang, S. K., Seok, L. H., Il, Y. C. (2006). The effect of type of organic phase solvents on the particle size of poly(D, L-lactide-co-glycolide) nanoparticles. Colloids and Surfaces 276, 162167. [ Links ]
Chisholm, M. H. (2010). Concerning the ring-opening polymerization of lactide and cyclic esters by coordination metal catalysts. Pure and Applied Chemistry 82, 1647-1662. [ Links ]
Colthup, N. B., Daly, L. H., Wiberley, S. E. (1975). Carbonyl compounds. In: Introduction to Infrared and Raman Spectroscopy. (Colthup, N. B.). Second ed, Pp 278-310, Academic Press Inc. [ Links ]
Dhandayuthapani, B., Yoshida, Y., Maekawa, T., Kumar, D. S. (2011). Polymeric scaffolds in tissue engineering application: A review. International Journal of Polymers Science. doi:10.1155/2011/290602.
Domb, A. J., Kost, J., Wiseman, D. (1998). Handbook of Biodegradable Polymers. Harwood Academic Publishers, Amsterdam. [ Links ]
Dong, C. M., Qiu, K. Y., Gu, Z. W. (2001). Synthesis of star-shape poly(ε-caprolactone)-b-poly(DL-lactic acid-alt-glycolic acid) with multifunctional initiator and stannous octoate catalyst. Macromolecules 34, 4691-4696. [ Links ]
Engineer, C., Parikh, J., Raval, A. (2011). Effect of copolymer ratio on hydrolytic degradation of poly(lactide-co-glycolide) from drug eluting coronary stents. Chemical Engineering Research and Design 89, 328-334. [ Links ]
Etter, M. C. (1990). Encoding and decoding hydrogen-bond patterns of organic compounds, American Chemical Society 23, 120-126. [ Links ]
Ford, V., Ashlee, N., Pack, D. W., Braatz, R. D. (2013). Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres-A review. Journal of Controlled Release 165, 29-37. [ Links ]
Fredenberg, S., Wahlgren, M., Reslow, M. (2011). The mechanism of drug release in poly(lactic-co-glycolic aci)-based drug delivery systems-A review. International Journal of Pharmaceutics 415, 34-52. [ Links ]
Gorrasi, G., Pantani, R. (2013). Effect of PLA grades and morphologies on hydrolytic degradation at composting temperature: Assessment of structural modification and kinetic parameters. Polymer Degradation and Stability 98, 1006-1014. [ Links ]
Gupta, B., Revagade, N. (2007). Hilborn J. Poly(lactic acid) fiber: An overview. Progress in Polymer Science 32, 455-482. [ Links ]
Ito, F., Fujimori, H., Honnami, H. (2009). Study of type and mixture ratio of organic solvent used to dissolve polymers for preparation of drug-containing PLGA microspheres. European Polymer Journal 45, 658-667. [ Links ]
Jérôme, C., Lecomte, P. (2008). Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Advanced Drug Delivery Reviews 60, 1056-1076. [ Links ]
Kohn, F.E., van Ommen, J. G., Feijen, J. (1983). The mechanism of the ring-opening polymerization of lactide and glycolide. European Polymer Journal 19, 1081-1088. [ Links ]
Lanza, R. P., Langer, R., Vacanti, J. (2000). Principles of Tissue Engineering. Academic press, seconded. ISBN: 978-0-12-436630-5. [ Links ]
Lucas, N., Bienaime, C., Belloy C. Queneudec, M., Silvestre, F., Nava-Saucedo, J. E. (2008). Polymer biodegradation: Mechanism and estimation techniques. Chemosphere 73, 429-442. [ Links ]
Madhavan, N. K., Rajendran, N. N., Pappy, J. R. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology 101, 8493-8501. [ Links ]
Maharana, T., Mohanty, B., Negi, Y. S. (2009). Melt-solid polycondensation of lactic acid and its biodegradability. Progress in Polymer Science 34, 99-124. [ Links ]
Makadia, H. K., Siegel, S. J. (2011). Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3, 1377-1397. [ Links ]
Maurus, P. B., Kaeding, C. C. (2004). Bioabsorbable implant material review. Operative Techniques in Sports Medicine 12, 158-160. [ Links ]
Miller-Chou, B, A., Koenig, J. L. (2003). A review of polymer dissolution. Progress in Polymer Science 28, 1223-1270. [ Links ]
Nair, L. S., Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Progress in Polymer Science 32, 762-798. [ Links ]
Place, E. S., Evans, N. D., Stevens, M. M. (2009). Complexity in biomaterials for tissue engineering. Nature Materials 8,457-470. [ Links ]
Rasal, R. M., Janorkar, A. V., Hirt, D. E. (2010). Poly(lactic acid) modifications. Progress in Polymer Science 35, 338-356. [ Links ]
Ratajczak-Sitarz, M., Katrusiak, A. (2011). Coupling of molecular orientation with the hydrogen-bond dimensions and H-sites in carboxylic acids. Journal of Molecular Structure 995, 29-34. [ Links ]
Raval, A., Choubey, A., Engineer, C. (2007). Novel biodegradable polymeric matrix coated cardiovascular stent for controlled drug delivery. Trends in Biomaterials and Artificial Organs 20, 101-110. [ Links ]
Regnier-Delplace, C., Thillaye du Boullay, O., Siepmann, F. (2013). PLGAs bearing carboxylated side chains: novel matrix formers with improved properties for controlled drug delivery. Journal of Controlled Release 166, 256-267. [ Links ]
Sackett, C. K., Narasimhan, B. (2011). Mathematical modeling of polymer erosion: Consequences for drug delivery. International Journal of Pharmaceutics 418, 104-114. [ Links ]
Saito, N., Murakami, N., Takahashi, J. (2005). Synthetic biodegradable polymers as drug delivery systems for bone morphogenic proteins. Advanced Drug Delivery Reviews 57, 1037-1048. [ Links ]
Sander, E. A., Alb, A. M., Nauman, E. A. (2004). Solvent effects on the microstructure and properties of 75/25 poly(D,L-lactide-co-glycolide) tissue scaffolds. Journal of Biomedical Materials 70, 506-513. [ Links ]
Seyednejad, H., Ghassemi, A. H., Van Nostrum, C. F. (2011). Functional aliphatic polyester for biomedical and pharmaceutical applications. Journal of Controlled Release 152, 168-176. [ Links ]
Storey, R. F., Sherman, J. W. (2002). Kinetics and mechanism of the stannous octoate-catalyzed bulk polymerization of ε-Caprolactone. Macromolecules 35, 1504-1512. [ Links ]
Stridsberg, K. M. (2000). Controller ring-opening polymerization: polymers with designed macromolecular architecture. Kista, A. B., Estocolmo. ISBN 91-7170-522-8. [ Links ]
Swiderski, G.,Wojtulewski, S., Kalinowska, M. (2011). Effect of alkali metal ions on the pyrrole and pyridine pi-electron systems in pyrrole-2-carboxylate and pyridine-2-carboxylate molecules: FT-IR, FT-Raman, NMR and theoretical studies. Journal of Molecular Structure 993, 448-458. [ Links ]
Vert, M. (2005). Aliphatic polyesters: Great degradable polymers that cannot do everything. Biomacromolecules 6, 538-546. [ Links ]
Wade, L. G Jr. (2004). Química Orgánica. Pearson Educación. Madrid. [ Links ]
Wang, Z. Y., Zhao, Y. M., Wang, F. (2006). Syntheses of poly(lactic acid-co-glyclolic acid) serial biodegradable polymer materials via direct melt polycondensation and their characterization. Journal of Applied Polymer Science 99, 244-252. [ Links ]
Williams, D. F. (1981). Biocompatibility of clinical implant materials. CRC Press, Boca Raton. [ Links ]
Xu, Q., Chin, S. E, Wang, C. H. (2013). Mechanism of drug release from double-walled PDLLA(PLGA) microspheres. Biomaterials 34, 3902-3911. [ Links ]
Zellin, G., Hedner, E., Linde, A. (1996). Bone regeneration by a combination of osteopromotive membranes with different BMP preparations: A review. Connective Tissue Research 35, 279-284. [ Links ]