Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Superficies y vacío
versión impresa ISSN 1665-3521
Superf. vacío vol.18 no.2 Ciudad de México jun. 2005
Articles
Effects of in-situ annealing processes of GaAs(100) surfaces on the molecular beam epitaxial growth of InAs quantum dots
*Instituto de Investigación en Comunicación Óptica and Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Karakorum 1470, Lomas 4ª. Sección, San Luis Potosí, San Luis Potosí, México. 78210.
**Physics Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Apartado Postal 14470, México, D.F., México.
We studied the growth of self-assembled InAs quantum dots (QDs) on GaAs (100) surfaces subjected to an in-situ annealing treatment. The treatment consists in exposing the GaAs buffer layer surface at a high temperature for a few seconds with the As4-shutter closed. The exposure of GaAs at high temperature leads to the formation of nanometric scale pits plus a Ga-rich surface. The annealing modifies in such a way the GaAs surface that the strain mediated transition from two- to three -dimensional InAs growth takes place at a much larger InAs thickness than the obtained under standard conditions. Moreover, the resulting QDs obtained at the equivalent InAs thickness of 3.4 monolayers (MLs) on the annealed GaAs surfaces presented a smaller size dispersion as compared with the conventionally grown QDs. The photoluminescence (PL) emission spectra corresponding to the samples subjected to the in-situ thermal treatment observed a reduction in the full width at half medium (FWHM) and a clear correlation between the dots size increase and the emission peak red-shift. The new-flanged nucleation propitiated by the annealing process was explained in terms of a generation of an intermediated InGaAs thin film created by Ga-clusters on an atomically rough surface and the impinging In atoms.
Keywords: Nanostructures; Quantum dots; Molecular beam epitaxy; Semiconducting III-V materials
Acknowledgments
The authors would like to express their thanks to the technical staff members: N. Saucedo-Zeni, B.E. Torres-Loredo and R. Fragoso. This work was partially supported by CONACyT-Mexico, FAI-UASLP, PROMEP-SESIC.
References
[1] C.D. Lee, C. Park, H.J. Lee, S.K. Noh, K.S. Lee, S.J. Park, Appl. Phys. Lett. 73, 2615 (1998). [ Links ]
[2] Y. Hasegawa, T. Egawa, T. Jimbo, M. Umeno, Appl. Phys. Lett. 68, 523 (1996). [ Links ]
[3] J.M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre, O. Vatel, Appl. Phys. Lett. 64, 196 (1994). [ Links ]
[4] M. Grundmann, O. Stier, D. Bimberg, Phys. Rev. B 52, 11969 (1995). [ Links ]
[5] J. Oshinowo, M. Nishioka, S. Ishida, Y. Arakawa, Appl. Phys. Lett. 65, 1421 (1994). [ Links ]
[6] T. Mano, K. Watanabe, S. Tsukamoto, H. Fujioka, M. Oshima, N. Koguchi, J. Crystal Growth 209, 504 (2000). [ Links ]
[7] P.B. Joyce, T.J. Krzyzewski, G.R. Bell, T.S. Jones, E.C. Le Ru, and R. Murray, Phys. Rev. B 64, 235317(2001). [ Links ]
[8] D.L. Huffaker and D.G. Deppe, Appl. Phys. Lett. 73, 520 (1998). [ Links ]
[9] P.B. Joyce , T.J. Krzyzewski , G.R. Bell , T.S. Jones , S. Malik, D. Childs, R. Murray , J. Crystal Growth 227-228, 1000 (2001). [ Links ]
[10] G.S. Solomon, J.A. Trezza, J.S. Harris Jr., Appl. Phys. Lett. 66, 3161 (1995). [ Links ]
[11] S. Kiravittaya, Y. Nakamura, O.G. Schmidt, Physica E 13, 224 (2002). [ Links ]
[12] M. López, Y. Takano, K. Pak and H. Yonezu, Jpn. J. Appl. Phys. 31, 1745 (1992). [ Links ]
[13] D.J. Chadi, J. Vac. Sci. Technol. A 5, 1482 (1987). [ Links ]
[14] P.B. Joyce , T.J. Krzyzewski , G.R. Bell , B.A. Joyce, T.S. Jones , Phys. Rev. B 58, R15981 (1998). [ Links ]
[15] B.F. Lewis, T.C. Lee, F.J. Grunthaner, A. Madhukar, R. Fernandez, and J. Maserjian, J. Vac. Sci. Technol. B 2, 419 (1984). [ Links ]
[16] Ch. Heyn and W. Hansen, J. Crystal Growth 251, 140 (2003). [ Links ]
Received: April 01, 2005; Accepted: May 11, 2005