Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Superficies y vacío
versión impresa ISSN 1665-3521
Superf. vacío vol.18 no.3 Ciudad de México sep. 2005
Articles
Structural evolution of Bi 2 O 3 prepared by thermal oxidation of bismuth nano-particles
1 Facultad de Química-Universidad Autónoma del Estado de México, Paseo Colón y Tollocan, C.P. 50130, Toluca, México.
2 Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Col. Escandón, Delegación Miguel Hidalgo, C.P. 11801, México, D.F.
3 Instituto de Física-Universidad Nacional Autónoma de México, Apdo. Postal 20-364 México 01000 D.F.
Bismuth nano-sized particles were prepared by the chemical reduction method. These particles were characterized by HR-TEM, X-Ray Diffraction and Micro-Raman Spectroscopy. In order to obtain bismuth oxide, the as-obtained bismuth nano-particles were thermally treated in air at various temperatures in the range 100-750 0C during 30 min. The thermally treated samples were studied by Micro-Raman Spectroscopy. Additionally, information on the chemical composition and morphology was obtained by Energy Dispersive Spectroscopy and Scanning Electron Microscopy, respectively. Results show that bismuth nano-particles were oxidized at 100 oC and transformed into three of the five phases of Bi2O3 reported in literature; the obtained phase depends on the annealing temperature. The β-Bi2O3 phase was obtained for 200-300 0C, α-Bi2O3 for 400-600 0C and finally γ-Bi2O3 for 700-750 0C.
Keywords: Bismuth oxide; Thermal oxidation; Micro-Raman spectroscopy
Acknowledgments
This work was financially supported through the projects: PROMEP103.5/04/1352 and UAEM 1950/2004B
References
[1] Wang, Y. W., Hee Hong Byung and S. Kim Kwang, J. Phys. Chem. 109, 7067 (2005). [ Links ]
[2] C. C. Huang, T. Y. Wen, K. Z. Fung, Materials Research Bulletin 41, 110(2006). [ Links ]
[3] Narang S. N., Patel N. D., Kartha V. B., Journal of Molecular Structure 327, 221 (1994). [ Links ]
[4] Hardcastle Franklin D. and Wachs Israel E., Journal of Solid State Chemistry, 97, 319 (1992). [ Links ]
[5] N. Cornei, N. Tancet, F. Abraham, O. Mentré, Inorganic Chemistry (2006). [ Links ]
[6] G. A. Tompsett, G. A. Bowmaker, R. P Cooney, J. B. Metson, K. A. Rodgers and J. M. Seakins, J. Raman Spectroscopy 26, 57(1985). [ Links ]
[7] I.R. Beattie, T.R. Gilson, J. Chem. Soc. A 2322 (1969). [ Links ]
[8] E.M. McCarron III, J. Chem. Soc. Chem. Commun. 336 (1986). [ Links ]
[9] G.A. Nazri, C. Julien, Solid State Ionics, 53 376 (1992). [ Links ]
[10] S. Venugopalan, A. K. Ramdas, Physical Review B 5, 4065 (1972). [ Links ]
[11] L. Escobar-Alarcón, E. Haro-Poniatowski, M. Fernández-Guati, A. Perea, C. N. Afonso, T. Falcón, Appl. Phys. A, 69, 949 (1999). [ Links ]
[12] B. Mihailova, M. Gospodinov, L. Konstantinov, J. Phys. Chem. Solids 60, 1821 (1999). [ Links ]
Received: June 09, 2005; Accepted: August 13, 2005