SciELO - Scientific Electronic Library Online

 
vol.18 número3Semiconductor thin films grown by RF-co-sputtering of CdTe and Al targetsMicrowave ECR plasma nitriding of AISI 4140 steel índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Superficies y vacío

versión impresa ISSN 1665-3521

Superf. vacío vol.18 no.3 Ciudad de México sep. 2005

 

Articles

Characterization of optical and structural properties of GaAsN layers grown by Molecular Beam Epitaxy

A. Pulzara-Moraa 

E. Cruz-Hernándezb 

J. Rojas-Ramirezb 

R. Contreras-Guerrerob 

M. Meléndez-Lirab 

C. Falcony-Guajardob 

M. López-Lópezb 

M. A. Aguilar-Frutisc 

M. A. Vidald 

a Departamento de Física y Química, Universidad Nacional de Colombia, Sede Manizales, Colombia.

b Physics Department, Centro de Investigación y Estudios Avanzados del IPN, Apartado Postal 14-740, México D.F, México 07000.

c Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, IPN, Legaria, Mexico.

d Instituto de Investigación en Comunicación Optica, UASLP, San Luis Potosí, México


Abstract

GaAsN layers were grown on GaAs(100) substrates by MBE employing a radio frequency (RF) plasma nitrogen source, and solid sources for Ga and As. The growth temperature was varied from 420 to 600 °C, and the GaAsN growth mode was in-situ monitored by reflection high-energy electron diffraction (RHEED). The optical properties of the layers were studied by photoreflectance spectroscopy (PR), phase modulated ellipsometry (PME), and photoluminescence. For the growth temperature of 420 °C the films grew in a three-dimensional (3D) mode as indicated by the appearance of transmission spots in the RHEED patterns. In contrast, GaAsN layers grown at higher temperatures presented a two-dimensional (2D) growth mode. These GaAsN layers are pseudomorphic according to high resolution x- ray diffraction (HRXRD). The PR spectra of all samples exhibited Franz-Keldish oscillations (FKO) above of the GaAs band-gap energy. From these oscillations we obtained the built-in internal electric field intensity (F int ) at the GaAsN/GaAs interface. In the low energy region of the PR spectra we observed the transitions associated to the fundamental band-gap of the GaAs1-xNx layers. The variation of the GaAsN fundamental band -gap obtained by PR as a function of the N content was explained according the band anticrossing model (BAC). On the other hand, the E1 and E1+ ∆E1 critical points were obtained from the analysis of spectra of the imaginary part of the dielectric function obtained by PME. We observed a shift of these critical points to higher energies with the increase of N content, which was explained by a combination of strain and alloying effects.

Keywords: III-V-N semiconductors; MBE; Optical properties; Structural characteristics

Full text available only in PDF format.

Acknowledgments

This work was partially supported by CONACyT-Mexico and UC-MEXUS. The authors would like to thank the technical assistance of E. Gomez, Z. Rivera, and A. Guillen. A.P.M thanks the support by the program CUAUTHEMOC III SRE - Mexico.

References

[1] C. W. Tu, J, Phys. Condens. Matter. 13, 7169 (2001). [ Links ]

[2] M. Reason, H. A. McKay, W. Ye, S. Hanson, and R. S. Goldman and V. Rotberg, Appl. Phys. Lett. 85, 1692 (2004). [ Links ]

[3] D.E. Aspnes, Phys Rev. B 10, 4228 (1974). [ Links ]

[4] F. H. Pollak. Surf. Interfase Anal. 31, 398 (2001). [ Links ]

[5] J. Luyo-Alvarado, M. Melendez-Lira, M. Lopez-Lopez, and S. Goto, J. Vac. Sci. Technol. B 19, 495 (2001). [ Links ]

[6] ; I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 3675 (2003). [ Links ]

[7] J. Misiewicz R. Kudrawiec, K. Ryczko, G. Sek, A. forchel, J. C.Harmand, and M. Hammar, J Phys.; Condens. Matter 16, S3071 (2004). [ Links ]

[8] S. Adachi, H. Mori, and S. Ozaki, Phys. Rev. B 66, 153201 (2002). [ Links ]

[9] G. Leibiger, V. Gottschalch, B. Rheinländer, J. S. Ik and M. Schubert, Appl. Phys. Lett. 69, 1650 (2000). [ Links ]

[10] M. Munoz, Y. S. Huang, F. H. Pollak, H. Yang, J. Appl. Phys. 93, 2549 (2003). [ Links ]

Received: July 13, 2005; Accepted: August 31, 2005

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License