SciELO - Scientific Electronic Library Online

 
vol.19 número3Structural and electro-thermal analysis of a magnetic resonant sensor structure based on Lorentz forceLaser-induced mechanical bending in azo dye-doped liquid-crystal elastomers índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Superficies y vacío

versión impresa ISSN 1665-3521

Superf. vacío vol.19 no.3 Ciudad de México sep. 2006

 

Resonant and non-resonant phenomena in measurements of microwave absorption in Co-based amorphous ribbons

 

H. Montiel1, G. Alvarez2, I. Betancourt2, R. Valenzuela2, R. Zamorano3

 

1 Centro de Ciencias Aplicadas y Desarrollo Tecnológico de la Universidad Nacional Autónoma de México, México, DF. 04510, México

2 Departamento de Materiales Metálicos y Cerámicos, Instituto de Investigaciones en Materiales de la Universidad Nacional Autónoma de México, México, DF. 04510, México

3 Escuela de Física y Matemáticas del Instituto Politécnico Nacional, México, DF. 07738, México

 

Recibido: 18 de diciembre de 2005.
Aceptado: 31 de agosto de 2006.

 

Abstract

Microwave absorption measurements in X band (9.4 GHz,), were carried out as a function of the transverse dc magnetic field, on as-cast amorphous ribbons of composition Co66Fe4B12Si13Nb4Cu prepared by melt spinning. Two different absorptions were observed: one at low dc fields (> 200 Oe) and the other one at high dc fields (< 1800 Oe). The high-field absorption has a resonant character and is associated with ferromagnetic resonance (FMR). The low-field absorption showed non-resonant features (hysteresis, non-Larmor dependence on the dc field) and can be associated with giant magnetoimpedance (GMI); it showed a good agreement when directly compared with GMI measurements. Some additional measurements were performed by rotating the sample's plane with respect to the dc field.

Keywords: Ferromagnetic resonance; Giant magnetoimpedance; Alloys amorphous.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] R. Valenzuela and I. Betancourt, IEEE Trans. Magn., 38, 3081 (2002).         [ Links ]

[2] R.C. O'Handley, "Modern Magnetic Materials Principles and Applications", John Wiley & Sons, New York, 347, 2000.         [ Links ]

[3] A. Yelon, L.G.C. Melo, P. Ciureanu and D. Menard, J. Magn. Magn. Mater. 249, 257 (2002).         [ Links ]

[4] G. K. Padam, S. N. Ekbote, Malay Rajan Tripathy, G. P. Srivastava and B. K. Das, Physica C 315, 45 (1999).         [ Links ]

[5] G. Alvarez and R. Zamorano, J. Alloys Comp. 369, 231 (2004).         [ Links ]

[6] H. Montiel. G. Alvarez, M. P. Gutiérrez, R. Zamorano and R. Valenzuela, J. Alloys Comp. 369, 141 (2004).         [ Links ]

[7] A. I. Veinger, A. G. Zabrodskii and T. V. Tisnek, Phys. Stat. Sol. (b) 218, 189 (2000).         [ Links ]

[8] F. J. Owens, J. Phys. Chem. Solids 58, 1311 (1997).         [ Links ]

[9] R. R. Rakhimov, H. R. Ries, D. E. Jones, L. B. Glebov and L. N. Glebova, Appl. Phys. Lett. 76, 751 (2000).         [ Links ]

[10] C. Kittel, Phys. Rev. 73, 155 (1948).         [ Links ]

[11] M. Domínguez, J.M. García-Beneytez, M. Vázquez, S.E. Lofland and S.M. Bhagat, J. Magn. Magn. Mater. 249, 117 (2002).         [ Links ]

[12] H. Hoffmann, Thin Sol. Films, 373, 107 (2000).         [ Links ]

[13] C. Tannous, J. Gieraltowski, J. Mat. Sci. Mat. Elec.,. 15, 125 (2004).         [ Links ]

[14] T.A. Ovari, H. Chiriac and M. Vazquez, IEEE Trans. Magn., 36, 3445 (2000).         [ Links ]

[15] J.M. García-Beneytez, F. Vinai, L. Brunetti, H. García- Miquel and M. Vazquez, Sensors & Act., 81, 78 (2000).         [ Links ]

[16] A. H. Morrish, The Physical Principles of Magnetism, (John Wiley & Sons Inc., New York, 1965)        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons