Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Superficies y vacío
versión impresa ISSN 1665-3521
Superf. vacío vol.21 no.2 Ciudad de México jun. 2008
Current conduction mechanisms in ntype αSiGe:H/ptype cSi heterojunctions
P. RosalesQuintero*, A. TorresJacome, F. J. De la HidalgaWade, C. ZúñigaIslas, W. CallejaArriaga, and C. ReyesBetanzo
Departamento de Electrónica, Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE). AP 51 & 216, C.P 72000, Puebla, Pue., México. * prosales@inaoep.mx
Recibido: 20 de enero de 2007.
Aceptado: 10 de marzo de 2008.
Abstract
ntype αSiGe:H/ptype cSi heterojunctions, fabricated with two different base doping concentrations (7×1017 and 5×1018 cm3) and two thicknesses (37 and 200 nm) for the ntype αSiGe:H film, were electrically characterized. The current transport mechanisms were determined by analyzing the temperature dependence of the currentvoltage characteristics. The electrical measurements show that at low forward bias (V < 0.45 V) the transport mechanisms depend on both the base doping concentration and the thickness of the amorphous film. On the other hand, at higher forward bias (V > 0.45 V) the spacecharge limited effect becomes the main transport mechanism for all the measured devices. The increase of both, base doping concentration and layer thickness, leads to an increase of the reverse leakage current. Using highfrequency capacitancevoltage characteristics both type of heterojunctions have shown an abrupt junction behavior. The Anderson rule was used to determine the conduction and valence band discontinuities for these heterojunctions.
Keywords: Amorphous semiconductors; Heterojunction diodes; Transport mechanisms; Leakage currents.
DESCARGAR ARTÍCULO EN FORMATO PDF
References
[1] A. I. Kosarev, A. J. Torres, C. Zuñiga, A. S. Abramov, P. Rosales, and A. Sibaja, J. of Mat. Res. 18, 1918 (2003). [ Links ]
[2] R. Ambrosio, A. Torres, A. Kosarev, C. Zúñiga, and A. S. Abramov, Latin American Circuits and Systems, INAOE, Puebla Mexico. 1, 18 (2002). [ Links ]
[3] W. Luft and Y. S. Tsuo, Hydrogenated amorphous silicon alloy Deposition processes 1ed. (Marcel Dekker, Inc., 1993). [ Links ]
[4] Rubí Salazar Amador, Diseño, Fabricación y Prueba de un Detector de Barrera Shocttky de αSiGe:H/pSi para el Rango Medio del Infrarrojo, Phd. Thesis INAOE, (Sta. María Tonantzintla, Puebla, México, 2002) [ Links ]
[5] M. L. García Cruz, A. Torres, A. Kosarev, R. Ambrosio, Journal of NonCrystalline Solids. 329, 179 (2003). [ Links ]
[6] A. HerediaJ, A. TorresJ, F.J. De la HidalgaW, A. JaramilloN, J. SánchezM, C. ZúñigaI., M. BasurtoP., and A. Pérez, Mat. Res. Soc. Symp. Proc. V2.4.1, 796 ( 2004) [ Links ]
[7] H. Matsuura, IEEETED. 36, 2908 (1989). [ Links ]
[8] L. F. Marsal, J. Pallarés, X. Correig, A. Orpella, D. Bardés and R. Alcubilla, J. Appl. Phys. 85 , 1216 (1999) [ Links ]
[9] L. F. Marsal, J. Pallarés, X. Correig, J. Calderer, and R. Alcubilla, J. Appl. Phys. 70, 8493 (1996). [ Links ]
[10] Ping Li, Yong Q., and C. Andre T. Salama, IEEETED, 41, 932 (1994). [ Links ]
[11] Z. R. Tang T. Kamins, and C. Andre T. Salama, IEEETED, 14, 348 (1993). [ Links ]
[12] P. RosalesQuintero, A. TorresJacome, R. MurphyArteaga F. J. De la Hidalga Wade, L. F. Marsal, R. Cabré, and J. Pallarès J. Appl. Phys. 97 083710 (2005). [ Links ]
[13] Werner Luft and Y. Simon Tsuo, Hydrogenated Amorphous Silicon Alloy Deposition Process, 1ed. (Marcel Dekker, Inc., 1993). [ Links ]
[14] H. Matsuura, and H. Okushi, Amorphous and Microcrystalline Semiconductor Devices, 1 ed. (edited by J. Kanicki Artech House, Boston, MA, Vol. 2, 1992) [ Links ]
[15] R. J. Nemanich, and M. J. Thompson Metal Semiconductor Schottky Barrier Junctions and Their Applications, 1ed. (edited by B. L. Sharma Plenum, New York, 1984). [ Links ]
[16] A. Rose, Phys. Rev. 97, 1538 (1955). [ Links ]
[17] L. F. Marsal, J. Pallarés, X. Correig, J. Calderer, and R. Alcubilla, Semiconductor Sci. and Technol, 11, 1209 (1996). [ Links ]
[18] A. J. Harris, R. S. Walker, and R. Sneddon .J. Appl. Phys. 51, 4287 (1980). [ Links ]
[19] P. RosalesQuintero, A. TorresJacome, R. MurphyArteaga and M. LandaVázquez, Semiconductor Sci. and Technol. 19, 366 (2004). [ Links ]
[20] L. Magafas, N. Georgoulas and A. Thanailakis, Semiconductor Sci. and Technol. 7, 1363 (1992). [ Links ]
[21] R. L. Anderson, SolidState Electron. 5, 34 (1962). [ Links ]
[22] X. Gangy and W. Tianmin, Semiconductor Sci. and Technol. 15, 613 (2000). [ Links ]
[23] Sze S. M. Physics of Semiconductor Devices, 2 ed. (Wiley, 1981) [ Links ]
[24] S. C. Jain and D. J. Roulston, SolidState Electron, 34, 453 (1991). [ Links ]
[25] D. M. Garner and G. A. J. Amaratunga, Solid State Electronics, 43, 1973 (1999). [ Links ]