SciELO - Scientific Electronic Library Online

 
vol.21 número2Determination of the optical energy gap of Ge1-xSn x alloys at 4K índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Superficies y vacío

versión impresa ISSN 1665-3521

Superf. vacío vol.21 no.2 Ciudad de México jun. 2008

 

Current conduction mechanisms in n–type α–SiGe:H/p–type c–Si heterojunctions

 

P. Rosales–Quintero*, A. Torres–Jacome, F. J. De la Hidalga–Wade, C. Zúñiga–Islas, W. Calleja–Arriaga, and C. Reyes–Betanzo

 

Departamento de Electrónica, Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE). AP 51 & 216, C.P 72000, Puebla, Pue., México. * prosales@inaoep.mx

 

Recibido: 20 de enero de 2007.
Aceptado: 10 de marzo de 2008.

 

Abstract

n–type α–SiGe:H/p–type c–Si heterojunctions, fabricated with two different base doping concentrations (7×1017 and 5×1018 cm–3) and two thicknesses (37 and 200 nm) for the n–type α–SiGe:H film, were electrically characterized. The current transport mechanisms were determined by analyzing the temperature dependence of the current–voltage characteristics. The electrical measurements show that at low forward bias (V < 0.45 V) the transport mechanisms depend on both the base doping concentration and the thickness of the amorphous film. On the other hand, at higher forward bias (V > 0.45 V) the space–charge limited effect becomes the main transport mechanism for all the measured devices. The increase of both, base doping concentration and layer thickness, leads to an increase of the reverse leakage current. Using high–frequency capacitance–voltage characteristics both type of heterojunctions have shown an abrupt junction behavior. The Anderson rule was used to determine the conduction and valence band discontinuities for these heterojunctions.

Keywords: Amorphous semiconductors; Heterojunction diodes; Transport mechanisms; Leakage currents.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] A. I. Kosarev, A. J. Torres, C. Zuñiga, A. S. Abramov, P. Rosales, and A. Sibaja, J. of Mat. Res. 18, 1918 (2003).         [ Links ]

[2] R. Ambrosio, A. Torres, A. Kosarev, C. Zúñiga, and A. S. Abramov, Latin American Circuits and Systems, INAOE, Puebla Mexico. 1, 18 (2002).         [ Links ]

[3] W. Luft and Y. S. Tsuo, Hydrogenated amorphous silicon alloy Deposition processes 1ed. (Marcel Dekker, Inc., 1993).         [ Links ]

[4] Rubí Salazar Amador, Diseño, Fabricación y Prueba de un Detector de Barrera Shocttky de α–SiGe:H/p–Si para el Rango Medio del Infrarrojo, Phd. Thesis INAOE, (Sta. María Tonantzintla, Puebla, México, 2002)         [ Links ]

[5] M. L. García Cruz, A. Torres, A. Kosarev, R. Ambrosio, Journal of Non–Crystalline Solids. 329, 179 (2003).         [ Links ]

[6] A. Heredia–J, A. Torres–J, F.J. De la Hidalga–W, A. Jaramillo–N, J. Sánchez–M, C. Zúñiga–I., M. Basurto–P., and A. Pérez, Mat. Res. Soc. Symp. Proc. V2.4.1, 796 ( 2004)        [ Links ]

[7] H. Matsuura, IEEE–TED. 36, 2908 (1989).         [ Links ]

[8] L. F. Marsal, J. Pallarés, X. Correig, A. Orpella, D. Bardés and R. Alcubilla, J. Appl. Phys. 85 , 1216 (1999)        [ Links ]

[9] L. F. Marsal, J. Pallarés, X. Correig, J. Calderer, and R. Alcubilla, J. Appl. Phys. 70, 8493 (1996).         [ Links ]

[10] Ping Li, Yong Q., and C. Andre T. Salama, IEEE–TED, 41, 932 (1994).         [ Links ]

[11] Z. R. Tang T. Kamins, and C. Andre T. Salama, IEEE–TED, 14, 348 (1993).         [ Links ]

[12] P. Rosales–Quintero, A. Torres–Jacome, R. Murphy–Arteaga F. J. De la Hidalga Wade, L. F. Marsal, R. Cabré, and J. Pallarès J. Appl. Phys. 97 083710 (2005).         [ Links ]

[13] Werner Luft and Y. Simon Tsuo, Hydrogenated Amorphous Silicon Alloy Deposition Process, 1ed. (Marcel Dekker, Inc., 1993).         [ Links ]

[14] H. Matsuura, and H. Okushi, Amorphous and Microcrystalline Semiconductor Devices, 1 ed. (edited by J. Kanicki Artech House, Boston, MA, Vol. 2, 1992)        [ Links ]

[15] R. J. Nemanich, and M. J. Thompson Metal Semiconductor Schottky Barrier Junctions and Their Applications, 1ed. (edited by B. L. Sharma Plenum, New York, 1984).         [ Links ]

[16] A. Rose, Phys. Rev. 97, 1538 (1955).         [ Links ]

[17] L. F. Marsal, J. Pallarés, X. Correig, J. Calderer, and R. Alcubilla, Semiconductor Sci. and Technol, 11, 1209 (1996).         [ Links ]

[18] A. J. Harris, R. S. Walker, and R. Sneddon .J. Appl. Phys. 51, 4287 (1980).         [ Links ]

[19] P. Rosales–Quintero, A. Torres–Jacome, R. Murphy–Arteaga and M. Landa–Vázquez, Semiconductor Sci. and Technol. 19, 366 (2004).         [ Links ]

[20] L. Magafas, N. Georgoulas and A. Thanailakis, Semiconductor Sci. and Technol. 7, 1363 (1992).         [ Links ]

[21] R. L. Anderson, Solid–State Electron. 5, 34 (1962).         [ Links ]

[22] X. Gangy and W. Tianmin, Semiconductor Sci. and Technol. 15, 613 (2000).         [ Links ]

[23] Sze S. M. Physics of Semiconductor Devices, 2 ed. (Wiley, 1981)        [ Links ]

[24] S. C. Jain and D. J. Roulston, Solid–State Electron, 34, 453 (1991).         [ Links ]

[25] D. M. Garner and G. A. J. Amaratunga, Solid State Electronics, 43, 1973 (1999).         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons