Servicios Personalizados
Revista
Articulo
Indicadores
-
Citado por SciELO
-
Accesos
Links relacionados
-
Similares en SciELO
Compartir
Superficies y vacío
versión impresa ISSN 1665-3521
Superf. vacío vol.22 no.1 Ciudad de México mar. 2009
FTIR and photoluminescence of annealed silicon rich oxide films
J. A. Luna-López*1, J. Carrillo-López1, M. Aceves-Mijares2, A. Morales-Sánchez2, C. Falcony3
1 CIDS-ICUAP, Benemérita Universidad de Puebla Ed. 136, Col, San Manuel. Puebla, Pue. México 72570. *jluna@inaoep.mx
2 Instituto Nacional de Astrofísica Óptica y Electrónica Apdo. 51 Puebla, Pue. 72000, México.
3 Departamento Física, CINVESTAV Apdo. 17-740 México D.F., México 07000.
Recibido: 16 de noviembre de 2008.
Aceptado: 30 de enero de 2009.
Abstract
In order to have optoelectronic function integrated in a single chip, it is very important to obtain a silicon compatible material with an optimal Photoluminescence (PL) response. The Silicon Rich Oxide (SRO) has shown intense PL and is also compatible with silicon technology. In this work, the composition and optical properties of the SRO films are studied using null Ellipsometry, Fourier Transformed Infrared spectroscopy (FTIR), and Photoluminescence (PL). The SRO films were annealed at high temperature during different times. The IR absorption spectra show the presence of three characteristics Si-O-Si vibrations modes in SiO2. However, changes in their intensity and position were observed when annealing time and silicon excess were varied. These changes are directly related with structural variation in the SRO films. PL spectra show a considerable emission in the range 650 to 850 nm that varies with different thermal treatment times.
Keywords: Silicon Rich Oxide (SRO); Silicon nanoparticles; Refractive index; Photoluminescence; FTIR.
DESCARGAR ARTÍCULO EN FORMATO PDF
References
[1] Canham L.T., Appl. Phys. Lett. 57, 1046(1990). [ Links ]
[2] Song H.Z. and Bao X.M., Phys. Rev. B 55, 6988(1997). [ Links ]
[3] Inokuma T., Wakayama Y., Muramoto T., Auki R., Muramoto Y., and Hasegawa S., J. Appl. Phys. 83, 2228(1998). [ Links ]
[4] Wisken F., Amans D., /Ledoux G., Hofmeister H., Cichos F., and Martin J., New J. Phys. 5, 10(2003). [ Links ]
[5] M. Aceves, A. Malik, and R. Murphy, In: Sensors and Chemometrics, eds: Maria Teresa Ramirez-Silva, (Research Signpost, ISBN: 81-7736-067-1, 2001) p.1-25. [ Links ]
[6] D. J. DiMaria, D. W. Dong, F. L. Pesavento, J. Appl. Phys., 55, 3000(1984). [ Links ]
[7] F. Ay, A. Aydinly, Optical Materials 26, 33(2004). [ Links ]
[8] M. Aceves, D. Berman, J. Carranza, L. Berriel, C. Domínguez, Nanotechnology, Anaheim, California USA (2005). [ Links ]
[9] P. G. Pai, S. S. Chao, Y. Takagi, and G. Lucovsky, J. Vac. Sci. Technol., A 4, 689 (1986). [ Links ]
[10] Pereyra, Alayo, Thin solid Films 402, 161(2002). [ Links ]
[11] J. A. Luna-Lopez, M. Aceves-Mijares, O. Malik, Z. Yu, A. Morales, C. Dominguez and J. Rickards, Revista Mexicana de Física, 53, 293 (2007). [ Links ]
[12] Zhenrui Yu, Mariano Aceves, A. Luna López, Enrique Quiroga, R. Lopez-Estopier, Focus on Nanomaterials Research. Cap. 9. Editors: Nova Science Publishers, (2006). [ Links ]
[13] A. Luna-Lopez, M. Aceves, O. Malik, Proceedings of the 2nd ICEEE-CIE 2005, IEEE catalog Num. 05EX1097, 435 (2005). [ Links ]
[14] Tomonari Morioka, Seiji Kimura, Noritoshi Tsuda, Chihiro Taito, Yoshio Saito and Chiyoe Koike, Mon. Not. R. Astron. Soc. 299, 78 (1998). [ Links ]
[15] Inokuma T., Kurata Y. and Hasewaga S., Journal of Electroluminescence 80, 247 (1999). [ Links ]
[16] Bairle R. J., Caldas M. J., Molinari E., Ossicini S., Solid State Communications 102, 545 (1997). [ Links ]
[17] Minoru Nakamura, Yasuhiro Mochizuki, and Katsuhisa Usami, Solid State Communications 50, 1079 (1984). [ Links ]
[18] Z. Yu, M. Aceves-Mijares, A. Luna-Lopez, Jinhui Du and Dongcai Bian, Nanotechnology 17, 4962 (2006). [ Links ]