SciELO - Scientific Electronic Library Online

 
vol.23 número2Síntesis y caracterización de películas nanoporosas de Al2O3Digital phase-analyzer for low frequency applications based on reconfigurable hardware índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Superficies y vacío

versión impresa ISSN 1665-3521

Superf. vacío vol.23 no.2 Ciudad de México jun. 2010

 

Analysis of masking effect on laser light scattering from unidirectional and isotropic machined surfaces

 

Juan de Dios Ortiz–Alvarado and Jorge A. Huerta–Ruelas

 

Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Instituto Politécnico Nacional Laboratorio de Metrología Óptica Cerro Blanco 141 Colinas del Cimatario C.P. 76090 Querétaro, Querétaro México.

 

Recibido: 19 de marzo de 2009.
Aceptado: 4 de mayo de 2010.

 

Abstract

An experimental study of masking effect on laser light scattering from machined surfaces is described. The results indicate that asperity distribution on rough surfaces is an implied factor on masking effect in addition to roughness and RMS slope. The masking effect was monitored on light scattering from isotropic and unidirectional rough surfaces. The masking effect characterized in isotropic rough surfaces agrees with the shadowing–masking function defined by B.G. Smith [IEEE Trans. Ant. and Prop. 15 668 (1967)]. We propose a new expression defined to describe masking effect on light scattering from unidirectional machined surfaces. This function was verified by comparing with experimental data. The results and the function proposed, are useful in implementing laser light scattering instruments for on–line monitoring of surface processes which produce unidirectional surface patterns (such as turning, milling, grinding, and some cases of extrusion, lithography and thin film growth), where geometrical setup requires large incidence angle.

Keywords: Laser light scattering; Surface roughness; Shadowing effect; Masking effect; Optical roughness meter.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

This work was supported by CONACYT under project SEP–2004–C01–47938. Authors acknowledge to Arturo Moreno Baez with his help to implement mechanical positioning system. Also, it is recognized a fruitful discussions with Ph.D. Gerardo Miramontes de León and Ph.D. Ivan Dominguez López.

 

References

[1]. R. Shinozaki, O. Sasaki and T. Suzuki. Advanced Materials and Devices for Sensing and Imaging. Proceedings of SPIE 5633, 31 (2005).         [ Links ]

[2]. P. Tomassini, L. Rovatti, G. Sansoni, and F. Docchio, Review of Scientific Instruments 72, 2207 (2001).         [ Links ]

[3]. M.A. Seif and M. Rawwash, Journal of Testing and Evaluation 34, 1 ( 2006).         [ Links ]

[4]. I. Yamaguchi, K. Kobayashi and L. Yaroslavsky, Optical Engineering 43, 2753 (2004).         [ Links ]

[5]. J. G. Valliant, M. P. Folley and J. M. Bennett, Optical Engineering 39, 3247 (2000).         [ Links ]

[6]. D. Fontani, F. Francini, G. Longobardi and P. Sansoni, Optics and Lasers in Engineering 35, 387 ( 2001).         [ Links ]

[7]. C.J. Tay, S.H. Wang, C. Quan and H. M. Shang, Optics Comunications 218, 1 (2003).         [ Links ]

[8]. M. Lequime, M. Zerrad, C. Dummié and C. Amra, Optics Communications 282, 1265 (2009).         [ Links ]

[9]. E. Marx and T. V. Vorburger, Applied Optics 29, 3613 (1990).         [ Links ]

[10]. P. Beckmann, A. Spizzichino, The Scattering of Electromagnetics Waves from Rough surfaces, (Pergamon Press. London 1963).         [ Links ]

[11]. L. Cao, T.V. Vorburger, A.G. Lieberman and T.R. Lettieri, Applied Optics 30, 3221 (1991).         [ Links ]

[12]. S.H. Wang, C. Quan, C. J. Tay and H. M. Shang, Optical Engineering 39, 1597 (2000).         [ Links ]

[13]. H. Li and K.E. Torrance, Advanced Characterization Techniques for Optics, Semiconductors, and Nanotechnologies II, Proceedings of SPIE 5878, 58780V (2005).         [ Links ]

[14]. C. Babu Rao and A.V. Ananta Lakshmi, Applied Optics 37, 7305 (1998).         [ Links ]

[15]. V.Y Mendeleyev, Optics Communications 268, 7 (2006).         [ Links ]

[16]. J. D. Ortiz–Alvarado, J. A. Rodríguez–Tirado, J.A. Huerta–Ruelas, Determinación de acabado superficial mediante patrón asimétrico de luz láser esparcida en superficies maquinadas, 28th International Conference on Materials Surfaces and Vacuum, (2008).         [ Links ]

[17]. K. Torrance and E. Sparrow, Journal of the Optical Society of America 57, 1105 (1967).         [ Links ]

[18]. P. Beckmann, IEEE Transactions on Antennas and Propagation AP–13, 384 (1965).         [ Links ]

[19]. B.G. Smith, IEEE Transactions on Antennas and Propagation AP–15, 668 (1967).         [ Links ]

[20]. K. Tang, R. A. Dimenna and R.A. Buckius, International Journal of Heat and Mass Transfer 40, 49 (1997).         [ Links ]

[21]. X.D. He, K. Torrance, F. X. Sillion, and D.P. Greenberg, Computers Graphics 25, 175 (1991).         [ Links ]

[22]. B Walter, S.R. Marschner, H. Li, K. E. Torrance, "Microfacet Models for Refraction through Rough Surfaces", Eurographics Symposium on Rendering 195 (2007).         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons