Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Superficies y vacío
versión impresa ISSN 1665-3521
Superf. vacío vol.23 no.4 Ciudad de México dic. 2010
Synthesis and optical properties of functionalized CdS nanoparticles with different sizes
G. A. MartínezCastañón1*, J. P. LoyolaRodríguez1, J. F. ReyesMacías1, N. NiñoMartínez2 and Facundo Ruiz2
1 Maestría en Ciencias Odontológicas, Facultad de Estomatología, UASLP Av. Manuel Nava # 2, Zona Universitaria, San Luis Potosí, S. L. P., México. Corresponding author: mtzcastanon@fciencias.uaslp.mx
2 Facultad de Ciencias, UASLP Álvaro Obregón 64, C. P. 78000, San Luis Potosí, S. L. P., México.
Recibido: 20 de agosto de 2010.
Aceptado: 21 de octubre de 2010.
Abstract
Water soluble CdS nanoparticles were synthesized using a simple aqueous method that enables us to obtain functionalized nanoparticles with different sizes, optical absorption and emission features. These differences were reached using several Cd2+ to S2 molar ratios and various capping agents. The size of the nanoparticles ranges were from 2.6 to 3.88 nm depending on the synthesis conditions. CdS nanoparticles prepared could be used as biolabels because their nanometric dimensions, luminescence signal and most important to their functionalization with organic molecules, which have functional groups that can attach them to biomolecules or cells.
Keywords: Luminescence; Nanomaterials; Semiconductors; Optical materials and properties.
DESCARGAR ARTÍCULO EN FORMATO PDF
References
[1]. C. S. Yang, D. D. Awschalom, G. D. Stucky, Chem. Mater. 13, 594 (2001). [ Links ]
[2]. A. Datta, A. Saha, A. K. Sinha, S. N. Bhattacharyya, S. Chatterjee, Journal of Photochemistry and Photobiology B: Biology. 78, 69 (2005). [ Links ]
[3]. Z. H. Zhang, W. S. Chin, J. J. Vittal, J. Phys. Chem. B. 108, 18569 (2004). [ Links ]
[4]. G. Bawendi, C. Murray, D. J. Norris, J. Am. Chem. Soc. 115, 8706 (1993). [ Links ]
[5]. T. Vossmeyer, L. Katsikas, M. Giersig, I. Popovik, K. Diesner, A. Chemseddine, A. Eychmüller, H. Weller, J. Phys. Chem. 98, 7665 (1994). [ Links ]
[6]. J. R. Lakowicz, I. Gryczynski, Z. Gryczynski, C. J. Murphy, J. Phys. Chem. B. 103, 7613 (1999). [ Links ]
[7]. E. R. Goldman, E. D. Balighian, M. K. Kuno, S. Labrenz, P. T. Tran, G. P. Anderson, J. M. Mauro, J. Mattoussi, Phys. Status Solidi B. 229, 407 (2002). [ Links ]
[8]. A. P. Alivisatos, W. Gu, C. Larabell, Annu. Rev. Biomed. Eng. 7, 55 (2005). [ Links ]
[9]. O. V. Salata, Journal of Nanobiotechnology 2, 3 (2004). [ Links ] [10]. T. Hirai, H. Sato, I. Komasawa, Ind. Eng. Chem. Res. 33, 3262 (1994). [ Links ]
[11]. G. Hota, S. Jain, K. C. Khilar, Angew. Chem. Int. Ed. 40, 4128 (2004). [ Links ]
[12]. G. A. MartínezCastañón, M. G. SánchezLoredo, J. R. MartínezMendoza and Facundo Ruiz, Advances in Technology of Materials and Materials Processing. 7, 171 (2005). [ Links ]
[13]. C. M. Niemeyer, Angew. Chem. Int. Ed. 40, 4128 (2001). [ Links ]
[14]. R. Mahtab, J. P. Rogers, C. P. Singleton and C. J. Murphy, J. Am. Chem. Soc. 118, 7028 (1996). [ Links ]