Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Superficies y vacío
versión impresa ISSN 1665-3521
Superf. vacío vol.24 no.1 Ciudad de México mar. 2011
Shifting to the red the absorption edge in TiO2 films: a photoacoustic study
F. Gordillo-Delgado*,º,ª, K. Villa-Gómezª y E. Marínb
ª Laboratorio de Optoelectrónica, Universidad del Quindío Apdo. Postal 2639 Armenia, Colombia. ºfgordillo@uniquindio.edu.co
*, b Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del I.P.N, Unidad Legaria Calz. Legaria 694. Col. Irrigación México D.F, México 11500.
Recibido: 4 de enero de 2010;
Aceptado: 22 de febrero de 2011
Abstract
When Titanium dioxide in contact with a polluted water sample is irradiated with ultraviolet light, electron-hole pairs can be generated, which can react with oxygen and water producing free radicals that can degrade the pollutants, changing them into harmless compounds for the environment. The ultraviolet component of the solar radiation is around 7%. Therefore, it is convenient to modify the TiO2 films crystalline structure for obtaining photocatalytical processes with visible light. In this work we report on the growth of TiO2 thin films by the Sol-gel technique considering the incorporation of AgNO3 in the initial solution containing the precursor. The concentration of the AgNO3 saline solution was changed between 5 and 30% to control the grain size of the grown TiO2 nanocrystals, impregnating 6 layers over glass slide substrates and using a sintering temperature of 600 °C. The obtained films were characterized structurally by means of X-ray diffraction. The shift in the forbidden energy bandwidth value to the red part of the optical absorption spectrum was evidenced by Photoacoustic Spectroscopy. The photocatalytic activity was tested on a solution of methylene blue using also the Photoacoustic technique.
Keywords: Titanium dioxide; Thin films; Sol-gel; Photocatalysis; Photoacoustic.
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgements
Authors acknowledge the partial financial support of COLCIENCIAS, "Universidad del Quindío" and SIP-IPN through projects number 20090477 and 20100780. This work was also supported by SEP-CONACyT Grant 83289.
We also thank the support from COFAA-IPN through the SIBE and PIFI Programs.
References
[1]. M. Bertelli, E. Selli. Journal of Hazardous Materials B, 138, 46 (2006). [ Links ]
[2]. W. Shangguana, A. Yoshida, M. Chen. Solar Energy Materials & Solar Cells, 80, 433 (2003). [ Links ]
[3]. Akira Fujishima, Xintong Zhang, Donald A. Tryk. Surface Science Reports 63, 515 (2008). [ Links ]
[4]. S. Banerjee, J. Gopal, P. Muraleedharan, A. K. Tyagi and B. Raj. Current Science, 90, 10, 1378 (2006). [ Links ]
[5]. A.Rosencwaig and A.Gersho. J. Appl. Phys. 47, 64 (1976). [ Links ]
[6]. P. Zeman, S. Takabayashi. Surfaces and Coatings Technology 153, 93 (2002). [ Links ]
[7]. H.G. Jiang, M. Ruhle, E. J. Lavernia. Journal of materials research, 14, 2, 549 (1999). [ Links ]
[8]. J.I. Pankove. Optical Processes in Semiconductors. Dover publications Inc., New Jersey, 37 (1971). [ Links ]
[9]. H. Tang, H. Berger, P.E. Schmid, F. Levy, V. T. Gritsyna, and D. A. Shirley, Solid State Commun. 87, 847 (1993). [ Links ]
Note
The Editors thank to the Physics Department of the Centro de Investigación y de Estudios Avanzados del IPN for the support in the publication of this issue, and the cooperation of M en C. Alejandra García Sotelo and Eng. Erasmo Gómez.